Skip to main content

Advertisement

Log in

Skeletal phenotypes in adult patients with osteogenesis imperfecta—correlations with COL1A1/COL1A2 genotype and collagen structure

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteogenesis imperfecta (OI) is characterized by a high fracture rate and great heterogeneity. This cross-sectional study presents skeletal investigations and protein analyses in 85 adult OI patients. We find significant differences in bone mass, architecture, and fracture rate that correlate well with the underlying biochemical and molecular abnormalities.

Introduction

OI is a hereditary disease characterized by compromised connective tissue predominantly caused by mutations in collagen type 1 (COL-1) encoding genes. Widespread symptoms reflect the ubiquity of COL-1 throughout the body. The purpose of this study was to improve our understanding of clinical manifestations by investigating anthropometry and skeletal phenotypes (DXA, HRpQCT) in an adult OI population and compare the findings to underlying COL-1 genotype and structure.

Methods

The study comprised 85 OI patients aged 45 (19–78) years, Sillence type I (n = 58), III (n = 12), and IV (n = 15). All patients underwent DXA, HRpQCT, spine X-ray, biochemical testing, and anthropometry. COL1A1 and COL1A2 were sequenced and 68 OI causing mutations identified (46 in COL1A1, 22 in COL1A2). Analysis of COL-1 structure (quantitative/qualitative defect) by SDS-PAGE was performed in a subset (n = 67).

Results

A qualitative collagen defect predisposed to a more severe phenotype with reduced aBMD, more fractures, and affected anthropometry compared to patients with a quantitative COL-1 defect (p < 0.05). HRpQCT revealed significant differences between patients with OI type I and IV. Patients with type I had lower vBMD (p < 0.005), thinner cortexes (p < 0.001), and reduced trabecular number (p < 0.005) compared to patients with type IV indicating that HRpQCT may distinguish type I from type IV better than DXA.

Conclusion

The defective collagen in patients with OI has pronounced effects on the skeleton. The classical OI types based on the clinical classification show profound differences in bone mass and architecture and the differences correlate well with the underlying biochemical and molecular collagen abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Korkko J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wekre LL, Eriksen EF, Falch JA (2011) Bone mass, bone markers and prevalence of fractures in adults with osteogenesis imperfecta. Arch Osteoporos 6:31–38

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  CAS  PubMed  Google Scholar 

  6. Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Dijk FS, Pals G, Van Rijn RR, Nikkels PG, Cobben JM (2010) Classification of osteogenesis imperfecta revisited. Eur J Med Genet 53:1–5

    Article  PubMed  Google Scholar 

  8. van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481

    Article  PubMed  Google Scholar 

  9. Byers PH (2002) Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest 109:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glorieux FH (2008) Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 22:85–100

    Article  CAS  PubMed  Google Scholar 

  11. Cheung MS, Arponen H, Roughley P, Azouz ME, Glorieux FH, Waltimo-Siren J, Rauch F (2011) Cranial base abnormalities in osteogenesis imperfecta: phenotypic and genotypic determinants. J Bone Miner Res 26:405–413

    Article  PubMed  Google Scholar 

  12. Bishop NJ, Walsh JS (2014) Osteogenesis imperfecta in adults. J Clin Invest 124(2):476–477. doi:10.1172/JCI74230

  13. Paterson CR, McAllion S, Stellman JL (1984) Osteogenesis imperfecta after the menopause. N Engl J Med 310:1694–1696

    Article  CAS  PubMed  Google Scholar 

  14. Patel RM, Nagamani SC, Cuthbertson D, Campeau PM, Krischer JP, Shapiro JR, Steiner RD, Smith PA, Bober MB, Byers PH, Pepin M, Durigova M, Glorieux FH, Rauch F, Lee BH, Hart T, Sutton VR (2014) A cross-sectional multicenter study of osteogenesis imperfecta in North America - results from the linked clinical research centers. Clin Genet 10

  15. Ben AI, Glorieux FH, Rauch F (2011) Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos 2011:540178. doi:10.4061/2011/540178

    Google Scholar 

  16. Lund AM, Schwartz M, Raghunath M, Steinmann B, Skovby F (1996) Gly802Asp substitution in the pro alpha 2(I) collagen chain in a family with recurrent osteogenesis imperfecta due to paternal mosaicism. Eur J Hum Genet 4:39–45

    CAS  PubMed  Google Scholar 

  17. Byers PH, Pyott SM (2012) Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet 46:475–497. doi:10.1146/annurev-genet-110711-155608

    Article  CAS  PubMed  Google Scholar 

  18. Lund AM (2002) Biochemical and molecular genetic studies of osteogenesis imperfecta. Dissertation. Danish summary. ISBN 8798917102

  19. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  20. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515

    Article  PubMed  Google Scholar 

  21. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    CAS  PubMed  Google Scholar 

  22. Marini JC, Reich A, Smith SM (2014) Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr 26:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paterson CR, Mole PA (1994) Bone density in osteogenesis imperfecta may well be normal. Postgrad Med J 70:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589

    Article  CAS  PubMed  Google Scholar 

  25. Folkestad L, Hald JD, Hansen S, Gram J, Langdahl B, Abrahamsen B, Brixen K (2012) Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res 27:1405–1412

    Article  PubMed  Google Scholar 

  26. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  CAS  PubMed  Google Scholar 

  27. Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res 25:1367–1374

    CAS  PubMed  Google Scholar 

  28. Ste-Marie LG, Charhon SA, Edouard C, Chapuy MC, Meunier PJ (1984) Iliac bone histomorphometry in adults and children with osteogenesis imperfecta. J Clin Pathol 37:1081–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatti D, Colapietro F, Fracassi E, Sartori E, Antoniazzi F, Braga V, Rossini M, Adami S (2003) The volumetric bone density and cortical thickness in adult patients affected by osteogenesis imperfecta. J Clin Densitom 6:173–177

    Article  PubMed  Google Scholar 

  30. Kocijan R, Muschitz C, Haschka J, Hans D, Nia A, Geroldinger A, Ardelt M, Wakolbinger R, Resch H (2015) Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta. Osteoporos Int 26:2431–2440

    Article  CAS  PubMed  Google Scholar 

  31. Hald JD, Evangelou E, Langdahl BL, Ralston SH (2014) Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res 30(5):929–933. doi:10.1002/jbmr.2410

  32. Lund AM, Schwartz M, Skovby F (1996) Genetic counselling and prenatal diagnosis of osteogenesis imperfecta caused by paternal mosaicism. Prenat Diagn 16:1032–1038

    Article  CAS  PubMed  Google Scholar 

  33. Andersen PE Jr, Hauge M (1989) Osteogenesis imperfecta: a genetic, radiological, and epidemiological study. Clin Genet 36:250–255

    Article  PubMed  Google Scholar 

  34. van Dijk FS, Byers PH, Dalgleish R, Malfait F, Maugeri A, Rohrbach M, Symoens S, Sistermans EA, Pals G (2012) EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur J Hum Genet 20:11–19

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Osteoporoseforeningen, A.P. Møllers Fond for almene Formaal, Karen Elise Jensens Fond, and Toyotafonden for financial support for the HRpQCT scanner, and Clinical Institute, AUH and Grosserer L.F.Foghts Fond for supporting the collagen analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Hald.

Ethics declarations

Conflicts of interests

Authors JDH and TH received speaker fee from Amgen. LF received speaker fee from Genzymes. JEBJ received board membership and speaker fee from Amgen, Eli Lilly, and MSD. BL received advisory boards and speaker fee from Amgen, Eli Lilly, Merck, and UCB, and received research support from Eli Lilly, Novo Nordisk, and Orkla. All the other authors declare that they have no conflicts of interest.

Grant supporters

Grants were by the Clinical Institute of Health, AUH, Denmark; Central Region of Denmark; Osteoporoseforeningen, Denmark; Grosserer L.F. Foghts Fond; A.P. Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal; Karen Elise Jensens Fond; Toyota-Fonden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hald, J.D., Folkestad, L., Harsløf, T. et al. Skeletal phenotypes in adult patients with osteogenesis imperfecta—correlations with COL1A1/COL1A2 genotype and collagen structure. Osteoporos Int 27, 3331–3341 (2016). https://doi.org/10.1007/s00198-016-3653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3653-0

Keywords

Navigation