Skip to main content
Log in

Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We examined fat-independent associations of hormones with height and whole-body bone size and mineral content in 633 school children. IGF-1 and osteocalcin predict growth in height, while fat, osteocalcin, and in girls also, IGF-1 predict growth in bone size. Leptin and ghrelin are inversely associated with bone size in girls.

Introduction

Obesity causes larger bone size and bone mass, but the role of hormones in this up-regulation of bone in obesity is not well elucidated. We examined longitudinal associations between baseline body fat mass (FM), and fat-independent fasting levels of ghrelin, adiponectin, leptin, insulin, insulin-like growth factor-I (IGF-1), osteocalcin, and intact parathyroid hormone, and subsequent changes in height and in whole-body height-adjusted bone area “BAheight” and size-adjusted bone mineral content “BMCsize” in 8- to 11-year-olds.

Methods

Analyses were carried out separately for boys (n = 325) and girls (n = 308) including data from baseline, 3 and 6 months from OPUS School Meal Study.

Results

In both sexes: gain in BAheight was positively associated with baseline FM (≥2.05 cm2/kg, both p ≤ 0.003). Furthermore, gain in height was positively associated with baseline IGF-1 (≥0.02 cm/ng/ml, p = 0.001) and osteocalcin (≥0.13 cm/ng/ml, p ≤ 0.009); and gain in BAheight was positively associated with baseline osteocalcin (≥0.35 cm2/ng/ml, p ≤ 0.019). In girls only, gain in BAheight was also positively associated with baseline IGF-1 (0.06 cm2/ng/ml, p = 0.017) and inversely associated with both baseline ghrelin (−0.01 cm2/pg/ml, p = 0.001) and leptin (−1.21 cm2/μg/ml, p = 0.005). In boys, gain in BMCsize was positively associated with osteocalcin (0.18 g/ng/ml, p = 0.030).

Conclusions

This large longitudinal study suggests that in 8- to 11-year-old children, IGF-1 and osteocalcin predict growth in height, while FM, osteocalcin, and in girls also, IGF-1 predict growth in BAheight. Fat-independent inverse associations of leptin and ghrelin with BAheight in girls’ are contrary to proposed growth-stimulating effects of leptin. Osteocalcin in boys predicts gain in BMCsize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

Bone area

BAheight :

Height-adjusted bone area

BMC:

Bone mineral content

BMCsize :

Size-adjusted bone mineral content

BMI:

Body mass index

CI:

Confidence interval

DXA:

Dual energy X-ray absorptiometry

FM:

Body fat mass

GH:

Growth hormone

IGF-1:

Insulin-like growth factor 1

iPTH:

Intact parathyroid hormone

IQR:

Interquartile range

LM:

Lean mass

OPUS:

Acronym for ‘Optimal well-being, development and health for Danish children through a healthy New Nordic Diet’

PTH:

Parathyroid hormone

References

  1. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713

    Article  CAS  PubMed  Google Scholar 

  2. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res 20:2090–2096

    Article  PubMed  Google Scholar 

  3. Valerio G, Galle F, Mancusi C, Di OV, Guida P, Tramontano A, Ruotolo E, Liguori G (2012) Prevalence of overweight in children with bone fractures: a case control study. BMC Pediatr 12:166

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  CAS  PubMed  Google Scholar 

  6. Marcovecchio ML, Chiarelli F (2013) Obesity and growth during childhood and puberty. World Rev Nutr Diet 106:135–141

    PubMed  Google Scholar 

  7. Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM, Godfrey KM, Cooper C, Dennison EM (2012) Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone 50:562–567

    Article  CAS  PubMed  Google Scholar 

  8. Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40:14–27

    Article  CAS  PubMed  Google Scholar 

  9. Shalitin S, Phillip M (2003) Role of obesity and leptin in the pubertal process and pubertal growth—a review. Int J Obes Relat Metab Disord 27:869–874

    Article  CAS  PubMed  Google Scholar 

  10. Misra M, Miller KK, Stewart V, Hunter E, Kuo K, Herzog DB, Klibanski A (2005) Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. J Clin Endocrinol Metab 90:5082–5087

    Article  CAS  PubMed  Google Scholar 

  11. Parm AL, Jurimae J, Saar M, Parna K, Tillmann V, Maasalu K, Neissaar I, Jurimae T (2011) Plasma adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts. J Bone Miner Metab 29:717–724

    Article  CAS  PubMed  Google Scholar 

  12. Campos RM, Lazaretti-Castro M, Mello MT, Tock L, Silva PL, Corgosinho FC, Carnier J, Piano A, Sanches PL, Masquio DC, Tufik S, Damaso AR (2012) Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol 56:12–18

    Article  PubMed  Google Scholar 

  13. Pomerants T, Tillmann V, Jurimae J, Jurimae T (2007) The influence of serum ghrelin, IGF axis and testosterone on bone mineral density in boys at different stages of sexual maturity. J Bone Miner Metab 25:193–197

    Article  CAS  PubMed  Google Scholar 

  14. Crabtree NJ, Hogler W, Cooper MS, Shaw NJ (2013) Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int 24:2015–2024

    Article  CAS  PubMed  Google Scholar 

  15. Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D (2005) Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol 184:249–256

    Article  CAS  PubMed  Google Scholar 

  16. Misra M, Miller KK, Kuo K, Griffin K, Stewart V, Hunter E, Herzog DB, Klibanski A (2005) Secretory dynamics of ghrelin in adolescent girls with anorexia nervosa and healthy adolescents. Am J Physiol Endocrinol Metab 289:E347–E356

    Article  CAS  PubMed  Google Scholar 

  17. Garnett SP, Hogler W, Blades B, Baur LA, Peat J, Lee J, Cowell CT (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80:966–972

    Article  CAS  PubMed  Google Scholar 

  18. Maggio AB, Belli DC, Puigdefabregas JW, Rizzoli R, Farpour-Lambert NJ, Beghetti M, McLin VA (2014) High bone density in adolescents with obesity is related to fat mass and serum leptin concentrations. J Pediatr Gastroenterol Nutr 58:723–728

    CAS  PubMed  Google Scholar 

  19. Rhie YJ, Lee KH, Chung SC, Kim HS, Kim DH (2010) Effects of body composition, leptin, and adiponectin on bone mineral density in prepubertal girls. J Korean Med Sci 25:1187–1190

    Article  PubMed  PubMed Central  Google Scholar 

  20. Afghani A, Goran MI (2009) The interrelationships between abdominal adiposity, leptin and bone mineral content in overweight Latino children. Horm Res 72:82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, Tufik S, do Nascimento CM, Oyama LM, Lofrano MC, Tock L, Caranti DA, Damaso AR (2009) Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab 27:613–619

    Article  PubMed  Google Scholar 

  22. Hong X, Arguelles LM, Tsai HJ, Zhang S, Wang G, Wang B, Liu X, Li Z, Tang G, Xing H, Xu X, Wang X (2010) Plasma adipokines, bone mass, and hip geometry in rural Chinese adolescents. J Clin Endocrinol Metab 95:1644–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, Katzman DK, Klibanski A (2007) Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 92:2046–2052

    Article  CAS  PubMed  Google Scholar 

  24. Roemmich JN, Clark PA, Mantzoros CS, Gurgol CM, Weltman A, Rogol AD (2003) Relationship of leptin to bone mineralization in children and adolescents. J Clin Endocrinol Metab 88:599–604

    Article  CAS  PubMed  Google Scholar 

  25. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  26. Iwamoto I, Fujino T, Douchi T (2004) The leptin receptor in human osteoblasts and the direct effect of leptin on bone metabolism. Gynecol Endocrinol 19:97–104

    Article  CAS  PubMed  Google Scholar 

  27. Gat-Yablonski G, Phillip M (2008) Leptin and regulation of linear growth. Curr Opin Clin Nutr Metab Care 11:303–308

    Article  CAS  PubMed  Google Scholar 

  28. Sayers A, Timpson NJ, Sattar N, Deanfield J, Hingorani AD, Davey-Smith G, Tobias JH (2010) Adiponectin and its association with bone mass accrual in childhood. J Bone Miner Res 25:2212–2220

    Article  CAS  PubMed  Google Scholar 

  29. Lawlor DA, Sattar N, Sayers A, Tobias JH (2012) The association of fasting insulin, glucose, and lipids with bone mass in adolescents: findings from a cross-sectional study. J Clin Endocrinol Metab 97:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Damsgaard CT, Dalskov SM, Petersen RA, Sorensen LB, Molgaard C, Biltoft-Jensen A, Andersen R, Thorsen AV, Tetens I, Sjodin A, Hjorth MF, Vassard D, Jensen JD, Egelund N, Dyssegaard CB, Skovgaard I, Astrup A, Michaelsen KF (2012) Design of the OPUS School Meal Study: a randomised controlled trial assessing the impact of serving school meals based on the New Nordic Diet. Scand J Public Health 40:693–703

    Article  PubMed  Google Scholar 

  31. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cole TJ, Flegal KM, Nicholls D, Jackson AA (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335:194–201

    Article  PubMed  PubMed Central  Google Scholar 

  33. Margulies L, Horlick M, Thornton JC, Wang J, Ioannidou E, Heymsfield SB (2005) Reproducibility of pediatric whole body bone and body composition measures by dual-energy X-ray absorptiometry using the GE Lunar Prodigy. J Clin Densitom 8:298–304

    Article  PubMed  Google Scholar 

  34. Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842

    Article  CAS  PubMed  Google Scholar 

  35. Laursen RP, Dalskov SM, Damsgaard CT, Ritz C (2014) Back-transformation of treatment differences—an approximate method. Eur J Clin Nutr 68:277–280

    Article  CAS  PubMed  Google Scholar 

  36. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947

    Article  CAS  PubMed  Google Scholar 

  37. Tena-Sempere M (2013) Ghrelin, the gonadal axis and the onset of puberty. Endocr Dev 25:69–82

    Article  CAS  PubMed  Google Scholar 

  38. Dalskov SM, Ritz C, Larnkjaer A, Damsgaard CT, Petersen RA, Sorensen LB, Ong KK, Astrup A, Molgaard C, Michaelsen KF (2014) The role of leptin and other hormones related to bone metabolism and appetite-regulation as determinants of gain in body fat and fat-free mass in 8-11 year old children. J Clin Endocrinol Metab 100:1196–1205

    Article  PubMed  Google Scholar 

  39. Huxley R, Neil A, Collins R (2002) Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360:659–665

    Article  PubMed  Google Scholar 

  40. Ozata M (2002) Different presentation of bone mass in mice and humans with congenital leptin deficiency. J Clin Endocrinol Metab 87:951

    Article  CAS  PubMed  Google Scholar 

  41. Cirmanova V, Bayer M, Starka L, Zajickova K (2008) The effect of leptin on bone: an evolving concept of action. Physiol Res 57(Suppl 1):S143–S151

    CAS  PubMed  Google Scholar 

  42. Zaidi M, Buettner C, Sun L, Iqbal J (2012) Minireview: the link between fat and bone: does mass beget mass? Endocrinology 153:2070–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:1664–1671

    Article  CAS  PubMed  Google Scholar 

  44. van Coeverden SC, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) 57:107–116

    Article  Google Scholar 

  45. Damsgaard CT, Dalskov SM, Laursen RP, Ritz C, Hjorth MF, Lauritzen L, Sorensen LB, Petersen RA, Andersen MR, Stender S, Andersen R, Tetens I, Molgaard C, Astrup A, Michaelsen KF (2014) Provision of healthy school meals does not affect the metabolic syndrome score in 8-11-year-old children, but reduces cardiometabolic risk markers despite increasing waist circumference. Br J Nutr 112:1826–1836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank families and schools for their participation. The OPUS study was financed by a grant from the Nordea Foundation (grant number 02-2010-478 0389). A complete list of food suppliers providing full or partial food sponsorships to the study can be found at the website: http://foodoflife.ku.dk/opus/wp/skolemadsprojektet/leverandorer. Sources of funding and donation had no role in the trial design; collection, analysis, or interpretation of data or decision to publish.

Conflict of interest

SD, CR, AL, CTD, RAP, LBS, KKO, KFM, and CM declare no conflicts of interest. AA is consultant/member of advisory boards for the Dutch Beer Knowledge Institute, NL, Global Dairy Platform, USA, McCain Foods Limited, USA, McDonald’s, USA. He is recipient of honoraria and travel grants as speaker for a wide range of Danish and international concerns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dalskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalskov, S., Ritz, C., Larnkjær, A. et al. Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children. Osteoporos Int 27, 1619–1629 (2016). https://doi.org/10.1007/s00198-015-3428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3428-z

Keywords

Navigation