Skip to main content

Advertisement

Log in

Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Calcaneal quantitative ultrasound (QUS) is attractive as a prescreening tool for osteoporosis, alternative to dual-energy X-ray absorptiometry. We investigated the literature of the usability of calcaneal QUS. We found large heterogeneity between studies and uncertainty about cutoff, device, and measured variable. Despite osteoporosis-related fractures being a major health issue, osteoporosis remains underdiagnosed. Dual-energy X-ray absorptiometry (DXA) of the hip or spine is currently the preferred method for diagnosis of osteoporosis, but the method is limited by low accessibility. QUS is a method for assessing bone alternative to DXA. The aim of this systematic review was to explore the usability of QUS as a prescreen stratification tool for assessment of osteoporosis. Studies that evaluated calcaneal QUS with DXA of the hip or spine as the gold standard was included. We extracted data from included studies to calculate number of DXAs saved and misclassification rates at cutoffs equal to high sensitivity and/or specificity. The number of DXAs saved and percentage of persons misclassified were measures of usability. We included 31 studies. Studies were heterogeneous regarding study characteristics. Analyses showed a wide spectrum of percentage of DXAs saved (2.7–68.8 %) and misclassification rates (0–12.4 %) depending on prescreen strategy and study characteristics, device, measured variable, and cutoff. Calcaneal QUS is potentially useful as a prescreen tool for assessment of osteoporosis. However, there is no consensus of device, variable, and cutoff. Overall, there is no sufficient evidence to recommend a specific cutoff for calcaneal QUS that provides a certainty level high enough to rule in or out osteoporosis. Calcaneal QUS in a prescreen or stratification algorithm must be based on device-specific cutoffs that are validated in the populations for which they are intended to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1–2):136. doi:10.1007/s11657-013-0136-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 17(12):1726–1733. doi:10.1007/s00198-006-0172-4

    Article  CAS  Google Scholar 

  3. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (1994). World Health Organization technical report series 843:1–129

  4. Rejnmark LAB, Ejersted C et al. (2009) Guidelines for diagnosis and treatment of osteoporosis (Vejledning til udredning og behandling af osteoporose - dansk knoglemedicinsk selskab). Danish bone medical society www.wp.dkms.dk/wp-content/uploads/2013/08/Samlet-osteoporose_180913.pdf. Accessed 090913 2013

  5. Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 16(2):134–141. doi:10.1007/s00198-004-1680-8

    Article  Google Scholar 

  6. GE Medical Systems Lunar (2001) Achilles Insight ™ operator’s manual.

  7. Roux C, Dougados M (2000) Quantitative ultrasound in postmenopausal osteoporosis. Curr Opin Rheumatol 12(4):336–345

    Article  CAS  PubMed  Google Scholar 

  8. Cepollaro C (2005) Quantitative ultrasound of bone: calcaneus. Clin Cases Miner Bone Metab 2(2):127–132

    Google Scholar 

  9. Bossuyt PM, Irwig L, Craig J, Glasziou P (2006) Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ (Clin Res Ed) 332(7549):1089–1092. doi:10.1136/bmj.332.7549.1089

    Article  Google Scholar 

  10. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clin Res Ed) 312(7041):1254–1259

    Article  CAS  Google Scholar 

  11. Moayyeri A, Kaptoge S, Luben RN, Bingham S, Wareham NJ, Reeve J, Khaw K (2009) Comparison of quantitative ultrasound and dual-energy X-ray absorptiometry for prediction of 10-year absolute risk of fracture among older men and women. Bone 44:S367. doi:10.1016/j.bone.2009.03.214

    Google Scholar 

  12. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res Off J Am Soc Bone Miner Res 18(11):1947–1954. doi:10.1359/jbmr.2003.18.11.1947

    Article  Google Scholar 

  13. Moayyeri A, Adams J, Adler R, Blake G, Krieg MA, Hans D, Compston J, Lewiecki EM (2011) Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 22:S98–S99. doi:10.1007/s00198-011-1566-5

    Google Scholar 

  14. Ultrasonography of peripheral sites for selecting patients for pharmacologic treatment for osteoporosis (2002). TEC bulletin (Online) 19 (1):25–28

  15. Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, Owens DK, Bravata DM (2006) Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 144(11):832–841

    Article  PubMed  Google Scholar 

  16. Patel RBG, Fordham JN, McCrea JD, Ryan PJ (2011) Peripheral X-ray absorptiometry in the management of osteoporosis. National Osteoporosis Society

  17. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio BL, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Schott AM, Lewiecki EM, Hans D (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11(1):163–187

    Article  PubMed  Google Scholar 

  18. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. doi:10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  19. Handbook for DTA reviews

  20. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clin Res Ed) 339:b2700. doi:10.1136/bmj.b2700

    Article  Google Scholar 

  21. Bachman DM, Crewson PE, Lewis RS (2002) Comparison of heel ultrasound and finger DXA to central DXA in the detection of osteoporosis. Implications for patient management. J Clin Densitom Off J Int Soc Clin Densitom 5(2):131–141

    Article  Google Scholar 

  22. Clowes JA, Peel NF, Eastell R (2006) Device-specific thresholds to diagnose osteoporosis at the proximal femur: an approach to interpreting peripheral bone measurements in clinical practice. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 17(9):1293–1302

    Article  CAS  Google Scholar 

  23. Dane C, Dane B, Cetin A, Erginbas M (2008) The role of quantitative ultrasound in predicting osteoporosis defined by dual-energy X-ray absorptiometry in pre- and postmenopausal women. Climacteric 11(4):296–303

    Article  CAS  PubMed  Google Scholar 

  24. Edelmann-Schafer B, Berthold LD, Stracke H, Luhrmann PM, Neuhauser-Berthold M (2011) Identifying elderly women with osteoporosis by spinal dual x-ray absorptiometry, calcaneal quantitative ultrasound and spinal quantitative computed tomography: a comparative study. Ultrasound Med Biol 37(1):29–36

    Article  PubMed  Google Scholar 

  25. Gemalmaz A, Discigil G, Ceylan C (2007) Diagnostic performance of QUS for identifying osteoporosis in postmenopausal Turkish women. Turk J Med Sci 37(5):303–309

    Google Scholar 

  26. Gudmundsdottir SL, Indridason OS, Franzson L, Sigurdsson G (2005) Age-related decline in bone mass measured by dual-energy X-ray absorptiometry and quantitative ultrasound in a population-based sample of both sexes: identification of useful ultrasound thresholds for osteoporosis screening. J Clin Densitom 8(1):80–86

    Article  PubMed  Google Scholar 

  27. Harrison EJ, Adams JE (2006) Application of a triage approach to peripheral bone densitometry reduces the requirement for central DXA but is not cost effective. Calcif Tissue Int 79(4):199–206

    Article  CAS  PubMed  Google Scholar 

  28. Larijani B, Dabbaghmanesh MH, Aghakhani S, Sedaghat M, Hamidi Z, Rahimi E (2005) Correlation of quantitative heel ultrasonography with central dual-energy x-ray absorptiometric bone mineral density in postmenopausal women. J Ultrasound Med 24(7):941–946

    PubMed  Google Scholar 

  29. Martini G, Valenti R, Gennari L, Salvadori S, Galli B, Nuti R (2004) Dual X-ray and laser absorptiometry of the calcaneus: comparison with quantitative ultrasound and dual-energy X-ray absorptiometry. J Clin Densitom 7(3):349–354

    Article  PubMed  Google Scholar 

  30. Panichkul S, Sripramote M, Sriussawaamorn N (2004) Diagnostic performance of quantitative ultrasound calcaneus measurement in case finding for osteoporosis in Thai postmenopausal women. J Obstet Gynaecol Res 30(6):418–426

    Article  PubMed  Google Scholar 

  31. Pearson D, Masud T, Sahota O, Earnshaw S, Hosking D (2003) A comparison of calcaneal dual-energy X-ray absorptiometry and calcaneal ultrasound for predicting the diagnosis of osteoporosis from hip and spine bone densitometry. J Clin Densitom 6(4):345–351

    Article  PubMed  Google Scholar 

  32. Pocock NA, Culton NL, Gilbert GR, Hoy ML, Babicheva R, Chu JM, Lee KS, Freund J (2000) Potential roles for quantitative ultrasound in the management of osteoporosis. Med J Aust 173(7):355–358

    CAS  PubMed  Google Scholar 

  33. Pongchaiyakul C, Panichkul S, Songpatanasilp T (2007) Combined clinical risk indices with quantitative ultrasound calcaneus measurement for identifying osteoporosis in Thai postmenopausal women. J Med Assoc Thail 90(10):2016–2023

    Google Scholar 

  34. Ayers M, Prince M, Ahmadi S, Baran DT (2000) Reconciling quantitative ultrasound of the calcaneus with X-ray-based measurements of the central skeleton. J Bone Mineral Res Off J Am Soc Bone Mineral Res 15(9):1850–1855. doi:10.1359/jbmr.2000.15.9.1850

    Article  CAS  Google Scholar 

  35. Boonen S, Nijs J, Borghs H, Peeters H, Vanderschueren D, Luyten FP (2005) Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital X-ray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporos Int 16(1):93–100

    Article  PubMed  Google Scholar 

  36. Diez-Perez A, Marin F, Vila J, Abizanda M, Cervera A, Carbonell C, Alcolea RM, Cama A, Rama T, Galindo E, Olmos C (2003) Evaluation of calcaneal quantitative ultrasound in a primary care setting as a screening tool for osteoporosis in postmenopausal women. J Clin Densitom Off J Int Soc Clin Densitom 6(3):237–245

    Article  Google Scholar 

  37. Dubois EF, van den Bergh JP, Smals AG, van de Meerendonk CW, Zwinderman AH, Schweitzer DH (2001) Comparison of quantitative ultrasound parameters with dual energy X-ray absorptiometry in pre- and postmenopausal women. Neth J Med 58(2):62–70

    Article  CAS  PubMed  Google Scholar 

  38. Falgarone G, Porcher R, Duche A, Kolta S, Dougados M, Roux C (2004) Discrimination of osteoporotic patients with quantitative ultrasound using imaging or non-imaging device. Joint Bone Spine Rev Rhum 71(5):419–423. doi:10.1016/j.jbspin.2003.09.011

    Article  Google Scholar 

  39. Felder M, Haldemann R, Anderhub HP (2000) Value of ultrasound study and dual energy x-ray absorptiometry (DEXA) for assessment of risk of osteoporosis. Prax 89(6):233–239

    CAS  Google Scholar 

  40. Hodson J, Marsh J (2003) Quantitative ultrasound and risk factor enquiry as predictors of postmenopausal osteoporosis: comparative study in primary care. BMJ (Clin Res Ed) 326(7401):1250–1251. doi:10.1136/bmj.326.7401.1250

    Article  Google Scholar 

  41. Kung AW, Ho AY, Sedrine WB, Reginster JY, Ross PD (2003) Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosis. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 14(9):716–721. doi:10.1007/s00198-003-1428-x

    Article  Google Scholar 

  42. Lippuner K, Fuchs G, Ruetsche AG, Perrelet R, Casez JP, Neto I (2000) How well do radiographic absorptiometry and quantitative ultrasound predict osteoporosis at spine or hip? A cost-effectiveness analysis. J Clin Densitom Off J Int Soc Clin Densitom 3(3):241–249

    Article  CAS  Google Scholar 

  43. Nairus J, Ahmadi S, Baker S, Baran D (2000) Quantitative ultrasound: an indicator of osteoporosis in perimenopausal women. J Clin Densitom 3(2):141–147

    Article  CAS  PubMed  Google Scholar 

  44. Pfister AK, Starcher V, Welch C (2003) The use of calcaneal quantitative ultrasound for determining bone mass of the hip. West Virginia Med J 99(2):71–73

    Google Scholar 

  45. Varney LF, Parker RA, Vincelette A, Greenspan SL (1999) Classification of osteoporosis and osteopenia in postmenopausal women is dependent on site-specific analysis. J Clin Densitom Off J Int Soc Clin Densitom 2(3):275–283

    Article  CAS  Google Scholar 

  46. Cook RB, Collins D, Tucker J, Zioupos P (2005) The ability of peripheral quantitative ultrasound to identify patients with low bone mineral density in the hip or spine. Ultrasound Med Biol 31(5):625–632

    Article  CAS  PubMed  Google Scholar 

  47. Naganathan V, March L, Hunter D, Pocock NA, Markovey J, Sambrook PN (1999) Quantitative heel ultrasound as a predictor for osteoporosis. Med J Aust 171(6):297–300

    CAS  PubMed  Google Scholar 

  48. Sim MF, Stone MD, Phillips CJ, Cheung WY, Johansen A, Vasishta S, Pettit RJ, Evans WD (2005) Cost effectiveness analysis of using quantitative ultrasound as a selective pre-screen for bone densitometry. Technol Health Care Off J Eur Soc Eng Med 13(2):75–85

    CAS  Google Scholar 

  49. Tromp AM, Smit JH, Deeg DJ, Lips P (1999) Quantitative ultrasound measurements of the tibia and calcaneus in comparison with DXA measurements at various skeletal sites. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 9(3):230–235

    Article  CAS  Google Scholar 

  50. Victor Sim MF, Stone M, Johansen A, Evans W (2000) Cost effectiveness analysis of BMD referral for DXA using ultrasound as a selective pre-screen in a group of women with low trauma Colles’ fractures. Technol Health Care 8(5):277–284

    Google Scholar 

  51. Langton CM, Langton DK, Beardsworth SA (1999) Comparison of accuracy and cost effectiveness of clinical criteria and BUA for referral for BMD assessment by DXA in osteoporotic and osteopenic perimenopausal subjects. Technol Health Care 7(5):319–330

    CAS  PubMed  Google Scholar 

  52. Hans D, Krieg MA (2008) The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1529–1538

    Article  CAS  PubMed  Google Scholar 

  53. Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom Off J Int Soc Clin Densitom 2(3):343–350

    Article  CAS  Google Scholar 

  54. Masud T, Francis RM (2000) The increasing use of peripheral bone densitometry. BMJ (Clin Res Ed) 321(7258):396–398

    Article  CAS  Google Scholar 

  55. Leeflang MM, Moons KG, Reitsma JB, Zwinderman AH (2008) Bias in sensitivity and specificity caused by data-driven selection of optimal cutoff values: mechanisms, magnitude, and solutions. Clin Chem 54(4):729–737. doi:10.1373/clinchem.2007.096032

    Article  CAS  PubMed  Google Scholar 

  56. Patel R (2011) Peripheral X-ray absorptiometry in the management of osteoporosis.

  57. Pang WY, Inderjeeth CA (2014) FRAX without bone mineral density versus osteoporosis self-assessment screening tool as predictors of osteoporosis in primary screening of individuals aged 70 and older. J Am Geriatr Soc 62(3):442–446. doi:10.1111/jgs.12696

    Article  PubMed  Google Scholar 

  58. Rud B, Hilden J, Hyldstrup L, Hrobjartsson A (2009) The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 20(4):599–607. doi:10.1007/s00198-008-0713-0

    Article  CAS  Google Scholar 

  59. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio Barquero L, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Schott AM, Lewiecki EM, Hans D (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom Off J Int Soc Clin Densitom 11(1):163–187. doi:10.1016/j.jocd.2007.12.011

    Article  Google Scholar 

  60. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM (2013) The clinical utility of bone marker measurements in osteoporosis. J Transl Med 11:201. doi:10.1186/1479-5876-11-201

    Article  PubMed Central  PubMed  Google Scholar 

  61. Burch J, Rice S, Yang H, Neilson A, Stirk L, Francis R, Holloway P, Selby P, Craig D (2014) Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol Assess (Winchester Engl) 18(11):1–180. doi:10.3310/hta18110

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thomsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, K., Jepsen, D.B., Matzen, L. et al. Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis?. Osteoporos Int 26, 1459–1475 (2015). https://doi.org/10.1007/s00198-014-3012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-3012-y

Keywords

Navigation