Skip to main content
Log in

Experimental and numerical investigation of shock wave-based methane pyrolysis for clean H\(_2\) production

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock wave reforming, or the use of shock waves to achieve the necessary high-temperature conditions for thermal cracking, has recently gained commercial interest as a new approach to clean hydrogen (H\(_2\)) generation. Presented here is an analysis of the chemical kinetic and gasdynamic processes driving the shock wave reforming process, as applied to methane (CH\(_4\)) reforming. Reflected shock experiments were conducted for high-fuel-loading conditions of 11.5–35.5% CH\(_4\) in Ar for 1790–2410 K and 1.6–4 atm. These experiments were used to assess the performance of five chemical kinetic models. Chemical kinetic simulations were then carried out to investigate the thermal pyrolysis of 100% CH\(_4\) across a wide range of temperature and pressure conditions (1400–2600 K, 1–30 atm). The impact of temperature, pressure, and reactor assumptions on H\(_2\) conversion yields was explored, and conditions yielding optimal H\(_2\) production were identified. Next, the gasdynamic processes needed to achieve the target temperature and pressure conditions for optimal H\(_2\) production were investigated, including analysis of requisite shock strengths and potential driver gases. The chemical kinetic and gasdynamic analyses presented here reveal a number of challenges associated with the shock wave reforming approach, but simultaneously reveal opportunities for further research and innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Material files. The experimental results plotted within the paper are tabulated in Supplementary Material.

References

  1. The Paris Agreement: 21st Conference of the Parties. United Nations Framework Convention on Climate Change (UNFCCC), Paris, France (2015). https://unfccc.int/process-and-meetings/the-paris-agreement

  2. Morgan, T.: The Hydrogen Economy: A Non-technical Review. United Nations Environment Programme/Earthprint (2006). https://api.semanticscholar.org/CorpusID:106711354

  3. Demirbas, A.: The hydrogen economy. In: Biohydrogen. Green Energy and Technology, pp. 241–251. Springer, London (2009). https://doi.org/10.1007/978-1-84882-511-6_8

  4. Hydrogen Production: Natural Gas Reforming: Hydrogen and Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy (EERE) (2022). https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming. Accessed 11 Dec 2022

  5. Global Hydrogen Review 2022: Technical Report. International Energy Agency (IEA), France (2022). https://www.iea.org/reports/global-hydrogen-review-2022. Accessed 11 Dec 2022

  6. Oni, A.O., Anaya, K., Giwa, T., Di Lullo, G., Kumar, A.: Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manag. 254, 115245 (2022). https://doi.org/10.1016/j.enconman.2022.115245

    Article  CAS  Google Scholar 

  7. Baykara, S.Z.: Hydrogen: a brief overview on its sources, production and environmental impact. Int. J. Hydrog. Energy 43(23), 10605–10614 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.022

    Article  CAS  Google Scholar 

  8. Cho, H.H., Strezov, V., Evans, T.J.: Environmental impact assessment of hydrogen production via steam methane reforming based on emissions data. Energy Rep. 8, 13585–13595 (2022). https://doi.org/10.1016/j.egyr.2022.10.053

    Article  Google Scholar 

  9. Sánchez-Bastardo, N., Schlögl, R., Ruland, H.: Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind. Eng. Chem. Res. 60(32), 11855–11881 (2021). https://doi.org/10.1021/acs.iecr.1c01679

    Article  CAS  Google Scholar 

  10. Weger, L., Abánades, A., Butler, T.: Methane cracking as a bridge technology to the hydrogen economy. Int. J. Hydrog. Energy 42(1), 720–731 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.029

    Article  CAS  Google Scholar 

  11. Keipi, T., Tolvanen, H., Konttinen, J.: Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies. Energy Convers. Manag. 159, 264–273 (2018). https://doi.org/10.1016/j.enconman.2017.12.063

    Article  CAS  Google Scholar 

  12. Dagle, R.A., Dagle, V., Bearden, M.D., Holladay, J.D., Krause, T.R., Ahmed, S.: An overview of natural gas conversion technologies for co-production of hydrogen and value-added solid carbon products. Technical Report PNNL-26726; ANL-17/11, Argonne National Laboratory/Pacific Northwest National Laboratory (2017). https://doi.org/10.2172/1411934

  13. Guéret, C., Daroux, M., Billaud, F.: Methane pyrolysis: thermodynamics. Chem. Eng. Sci. 52(5), 815–827 (1997). https://doi.org/10.1016/S0009-2509(96)00444-7

    Article  Google Scholar 

  14. Akbari, P., Copeland, C.D., Tuchler, S., Davidson, M., Mahmoodi-Jezeh, S.V.: Shock wave heating: a novel method for low-cost hydrogen production. ASME 2021 International Mechanical Engineering Congress and Exposition (IMECE2021), vol. 8A, Paper IMECE2021-69775, V08AT08A018 (2021). https://doi.org/10.1115/IMECE2021-69775

  15. New Wave Hydrogen, Inc.: https://www.newwaveh2.com. Accessed 11 Dec 2022

  16. Ekona Power, Inc.: https://www.ekonapower.com. Accessed 11 Dec 2022

  17. Rabinowitz, M.J., Sutherland, J.W., Patterson, P.M., Klemm, R.B.: Direct rate constant measurements for atomic hydrogen + methane \(\rightarrow \) methyl + hydrogen, 897–1729 K, using the flash photolysis-shock tube technique. J. Phys. Chem. 95(2), 674–681 (1991). https://doi.org/10.1021/j100155a033

    Article  CAS  Google Scholar 

  18. Davidson, D.F., Di Rosa, M.D., Chang, A.Y., Hanson, R.K., Bowman, C.T.: A shock tube study of methane decomposition using laser absorption by CH\(_3\). Symposium (International) on Combustion, vol. 24, no. 1, pp. 589–596 (1992). https://doi.org/10.1016/S0082-0784(06)80072-X

  19. Klemm, R.B., Sutherland, J.W., Rabinowitz, M.J., Patterson, P.M., Quartemont, J.M., Tao, W.: Shock tube kinetic study of methane dissociation: 1726 K \(\le \) T \(\le \) 2134 K. J. Phys. Chem. 96(4), 1786–1793 (1992). https://doi.org/10.1021/j100183a054

    Article  CAS  Google Scholar 

  20. Kiefer, J.H., Kumaran, S.S.: Rate of methane dissociation over 2800–4300 K: the low-pressure-limit rate constant. J. Phys. Chem. 97(2), 414–420 (1993). https://doi.org/10.1021/j100104a024

    Article  CAS  Google Scholar 

  21. Hidaka, Y., Sato, K., Henmi, Y., Tanaka, H., Inami, K.: Shock-tube and modeling study of methane pyrolysis and oxidation. Combust. Flame 118(3), 340–358 (1999). https://doi.org/10.1016/S0010-2180(99)00010-3

    Article  ADS  CAS  Google Scholar 

  22. Agafonov, G.L., Borisov, A.A., Smirnov, V.N., Troshin, K.Y., Vlasov, P.A., Warnatz, J.: Soot formation during pyrolysis of methane and rich methane/oxygen mixtures behind reflected shock waves. Combust. Sci. Technol. 180(10–11), 1876–1899 (2008). https://doi.org/10.1080/00102200802261423

    Article  CAS  Google Scholar 

  23. Fau, G., Gascoin, N., Gillard, P., Steelant, J.: Methane pyrolysis: literature survey and comparisons of available data for use in numerical simulations. J. Anal. Appl. Pyrol. 104, 1–9 (2013). https://doi.org/10.1016/j.jaap.2013.04.006

    Article  CAS  Google Scholar 

  24. Nativel, D., Shu, B., Herzler, J., Fikri, M., Schulz, C.: Shock-tube study of methane pyrolysis in the context of energy-storage processes. Proc. Combust. Inst. 37(1), 197–204 (2019). https://doi.org/10.1016/j.proci.2018.06.083

    Article  CAS  Google Scholar 

  25. Shao, J., Ferris, A.M., Choudhary, R., Cassady, S.J., Davidson, D.F., Hanson, R.K.: Shock-induced ignition and pyrolysis of high-pressure methane and natural gas mixtures. Combust. Flame 221, 364–370 (2020). https://doi.org/10.1016/j.combustflame.2020.08.010

    Article  ADS  CAS  Google Scholar 

  26. Bedarev, I.A., Parmon, V.N., Fedorov, A.V., Fedorova, N.N., Fomin, V.M.: Numerical study of methane pyrolysis in shock waves. Combust. Explos. Shock 40(5), 580–590 (2004). https://doi.org/10.1023/B:CESW.0000041411.91918.9b

    Article  Google Scholar 

  27. Mahmoodi-Jezeh, S.V., Tüchler, S., Madiot, G., Davidson, M., Akbari, P., Copeland, C.D.: Numerical study of methane pyrolysis inside a single-channel shock wave reformer. ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, vol. 2, Paper GT2022-82683, V002T03A013 (2022). https://doi.org/10.1115/GT2022-82683

  28. Ren, W., Davidson, D.F., Hanson, R.K.: IR laser absorption diagnostic for C\(_2\)H\(_4\) in shock tube kinetics studies. Int. J. Chem. Kinet. 44(6), 423–432 (2012). https://doi.org/10.1002/kin.20599

    Article  CAS  Google Scholar 

  29. Stranic, I., Hanson, R.K.: Laser absorption diagnostic for measuring acetylene concentrations in shock tubes. J. Quant. Spectrosc. Radiat. 142, 58–65 (2014). https://doi.org/10.1016/j.jqsrt.2014.03.024

    Article  ADS  CAS  Google Scholar 

  30. Zhang, Y., Dong, W., Vandewalle, L., Xu, R., Smith, G., Wang, H.: Foundational Fuel Chemistry Model Version 2.0 (FFCM-2) (2023). https://web.stanford.edu/group/haiwanglab/FFCM2

  31. Goodwin, D.G., Moffat, H.K., Schoegl, I., Speth, R.L., Weber, B.W.: Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes (2022). https://www.cantera.org. Version 2.6.0. https://doi.org/10.5281/zenodo.8137090

  32. Panigrahy, S., Mohamed, A.A.E.-S., Wang, P., Bourque, G., Curran, H.J.: When hydrogen is slower than methane to ignite. Proc. Combust. Inst. 39(1), 253–263 (2023). https://doi.org/10.1016/j.proci.2022.08.025

    Article  CAS  Google Scholar 

  33. Pejpichestakul, W., Ranzi, E., Pelucchi, M., Frassoldati, A., Cuoci, A., Parente, A., Faravelli, T.: Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc. Combust. Inst. 37(1), 1013–1021 (2019). https://doi.org/10.1016/j.proci.2018.06.104

    Article  CAS  Google Scholar 

  34. Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., Faravelli, T.: Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet. 46(9), 512–542 (2014). https://doi.org/10.1002/kin.20867

    Article  CAS  Google Scholar 

  35. Ranzi, E., Cavallotti, C., Cuoci, A., Frassoldati, A., Pelucchi, M., Faravelli, T.: New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes. Combust. Flame 162(5), 1679–1691 (2015). https://doi.org/10.1016/j.combustflame.2014.11.030

    Article  ADS  CAS  Google Scholar 

  36. Sun, W., Hamadi, A., Abid, S., Chaumeix, N., Comandini, A.: Probing PAH formation chemical kinetics from benzene and toluene pyrolysis in a single-pulse shock tube. Proc. Combust. Inst. 38(1), 891–900 (2021). https://doi.org/10.1016/j.proci.2020.06.077

    Article  CAS  Google Scholar 

  37. Chu, T.-C., Buras, Z.J., Oßwald, P., Liu, M., Goldman, M.J., Green, W.H.: Modeling of aromatics formation in fuel-rich methane oxy-combustion with an automatically generated pressure-dependent mechanism. Phys. Chem. Chem. Phys. 21, 813–832 (2019). https://doi.org/10.1039/C8CP06097E

    Article  CAS  PubMed  Google Scholar 

  38. Porras, S., Kaczmarek, D., Herzler, J., Drost, S., Werler, M., Kasper, T., Fikri, M., Schießl, R., Atakan, B., Schulz, C., Maas, U.: An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures. Combust. Flame 212, 107–122 (2020). https://doi.org/10.1016/j.combustflame.2019.09.036

    Article  ADS  CAS  Google Scholar 

  39. Abad, A.V., Dodds, P.E.: Production of hydrogen. In: Abraham, M.A. (ed.) Encyclopedia of Sustainable Technologies, vol. 3, pp. 293–304. Elsevier, Amsterdam (2017). https://doi.org/10.1016/B978-0-12-409548-9.10117-4

    Chapter  Google Scholar 

  40. Anderson, J.D.: Modern Compressible Flow: With Historical Perspective. McGraw-Hill, Boston (2004)

    Google Scholar 

  41. Hanson, R.K., Davidson, D.F.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  42. Akbari, P., Nalim, R., Mueller, N.: A review of wave rotor technology and its applications. J. Eng. Gas Turb. Power 128(4), 717–735 (2006). https://doi.org/10.1115/1.2204628

  43. Burcat, A., Ruscic, B., Chemistry and Technion—Israel Institute of Technology: Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). Technical Report ANL-05/20, Argonne National Laboratory (2005). https://doi.org/10.2172/925269

  44. Kramer, D.: Helium is again in short supply. Phys. Today 2022(2), 0404 (2022). https://doi.org/10.1063/pt.6.2.20220404a

    Article  Google Scholar 

  45. Folga, S.M., Decision, Sciences, I.: Natural Gas Pipeline Technology Overview. Technical Report ANL/EVS/TM/08-5, Argonne National Laboratory, Argonne, IL (2007). https://doi.org/10.2172/925391

Download references

Acknowledgements

This work was sponsored in part by Emissions Reduction Alberta (ERA) and the Natural Gas Innovation Fund (NGIF), via New Wave Hydrogen, Inc. (NWH\(_2\)), the Precourt Institute for Energy (Stanford University), and the Stanford University Hydrogen Initiative. Any opinions, findings, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of ERA, NGIF, NWH\(_2\), the Precourt Institute for Energy, or Stanford University. These funding sources were not involved in study design, data interpretation, or preparation of the manuscript. The authors would additionally like to acknowledge and thank Luke Zaczek and Alka Panda for their assistance in setting up and conducting the experiments described in Sect. 2 of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ferris.

Ethics declarations

Conflict of interest

the authors declare that they have no conflict of interest.

Additional information

Communicated by G. Ciccarelli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on work that was presented at the 29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Siheung, Korea, July 23–28, 2023.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (xlsx 1312 KB)

Supplementary file 2 (pdf 7549 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferris, A.M., Biswas, P., Choudhary, R. et al. Experimental and numerical investigation of shock wave-based methane pyrolysis for clean H\(_2\) production. Shock Waves (2024). https://doi.org/10.1007/s00193-024-01159-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00193-024-01159-4

Keywords

Navigation