Skip to main content
Log in

Effects of ozone addition and LTC progression on detonation of O\(_{3}\)-enhanced DME–O\(_{2}\)

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The effects of ozone addition and low-temperature chemistry (LTC) progression on DME/O\(_{2}\) detonations are evaluated with experimental detonation velocity and cell size measurements and one-dimensional ZND simulations. For \( \phi = 1.2\) and \(P_{\textrm{o}}= 22.7\) kPa, detonations are experimentally investigated over a range of ozone enhancement levels (0.0–1.6-mol%), initial reactant temperatures (293 K and 468 K), and LTC progression times (250–6000 ms). A 33-K gas temperature rise from LTC heat release is observed for mixtures with 1.0-mol% ozone enhancement and initial temperature of 468 K, suggesting a limited extent of LTC progression in this study. Experiments showed minimal detonation velocity dependence on ozone enhancement level or LTC progression despite the increased radical pool. Average cell size is found to decrease 15–30% with 1.6-mol% ozone addition, indicating a greater reactant mixture sensitivity to detonation. To estimate the cell size, a center-of-exothermic-length induction length is defined and used with an empirical correlation to calculate a singular cell size when multiple thermicity peaks are present in ZND modeling. This approach shows good agreement with experimental findings. Cell size dependence on LTC progression is found to have a statistically insignificant variance for LTC progression times at the temperatures used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zeldovich, Y.B.: To the question of energy use of detonation combustion. J. Tech. Phys. 10, 1453–1461 (1940)

    Google Scholar 

  2. Kailasanath, K.: Recent developments in the research on rotating-detonation-wave engines. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017–0784 (2017). https://doi.org/10.2514/6.2017-0784

  3. Kailasanath, K.: Review of propulsion applications of detonation waves. AIAA J. 38, 1698–1708 (2000). https://doi.org/10.2514/2.1156

  4. Zhou, R., Wu, D., Wang, J.: Progress of continuously rotating detonation engines. Chin. J. Aeronaut. 29, 15–29 (2016). https://doi.org/10.1016/j.cja.2015.12.006

    Article  Google Scholar 

  5. Wolański, P.: Detonative propulsion. Proc. Combust. Inst. 34, 125–158 (2013). https://doi.org/10.1016/j.proci.2012.10.005

    Article  Google Scholar 

  6. Ju, Y., Reuter, C.B., Yehia, O.R., Farouk, T.I., Won, S.H.: Dynamics of cool flames. Prog. Energy Combust. Sci. 75, 100787 (2019). https://doi.org/10.1016/j.pecs.2019.100787

    Article  Google Scholar 

  7. Law, C.K.: Combustion Physics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Herzler, J., Jerig, L., Roth, P.: Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures. Proc. Combust. Inst. 30, 1147–1153 (2005). https://doi.org/10.1016/j.proci.2004.07.008

    Article  Google Scholar 

  9. Kukkadapu, G., Kumar, K., Sung, C., Mehl, M., Pitz, W.J.: Autoignition of gasoline surrogates at low temperature combustion conditions. Combust. Flame 162, 2272–2285 (2015). https://doi.org/10.1016/j.combustflame.2015.01.025

    Article  Google Scholar 

  10. Tao, M., Zhao, P., Szybist, J.P., Lynch, P., Ge, H.: Insights into engine autoignition: combining engine thermodynamic trajectory and fuel ignition delay iso-contour. Combust. Flame 200, 207–218 (2019). https://doi.org/10.1016/j.combustflame.2018.11.025

    Article  Google Scholar 

  11. Dryer, F.L., Haas, F.M., Santner, J., Farouk, T.I., Chaos, M.: Interpreting chemical kinetics from complex reaction–advection–diffusion systems: modeling of flow reactors and related experiments. Prog. Energy Combust. Sci. 44, 19–39 (2014). https://doi.org/10.1016/j.pecs.2014.04.002

    Article  Google Scholar 

  12. Herbinet, O., Battin-Leclerc, F.: Progress in understanding low-temperature organic compound oxidation using a jet-stirred reactor. Int. J. Chem. Kinet. 46, 619–639 (2014). https://doi.org/10.1002/kin.20871

    Article  Google Scholar 

  13. Alfazazi, A., Al-Omier, A., Secco, A., Selim, H., Ju, Y., Sarathy, S.M.: Cool diffusion flames of butane isomers activated by ozone in the counterflow. Combust. Flame 191, 175–186 (2018). https://doi.org/10.1016/j.combustflame.2017.12.034

    Article  Google Scholar 

  14. Reuter, C.B., Won, S.H., Ju, Y.: Flame structure and ignition limit of partially premixed cool flames in a counterflow burner. Proc. Combust. Inst. 36, 1513–1522 (2017). https://doi.org/10.1016/j.proci.2016.06.067

    Article  Google Scholar 

  15. Reuter, C.B., Won, S.H., Ju, Y.: Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combust. Flame 166, 125–132 (2016). https://doi.org/10.1016/j.combustflame.2016.01.008

    Article  Google Scholar 

  16. Won, S.H., Jiang, B., Diévart, P., Sohn, C.H., Ju, Y.: Self-sustaining n-heptane cool diffusion flames activated by ozone. Proc. Combust. Inst. 35, 881–888 (2015). https://doi.org/10.1016/j.proci.2014.05.021

    Article  Google Scholar 

  17. Hajilou, M., Ombrello, T., Won, S.H., Belmont, E.: Experimental and numerical characterization of freely propagating ozone-activated dimethyl ether cool flames. Combust. Flame 176, 326–333 (2017). https://doi.org/10.1016/j.combustflame.2016.11.005

    Article  Google Scholar 

  18. Hajilou, M., Belmont, E.: Characterization of ozone-enhanced propane cool flames at sub-atmospheric pressures. Combust. Flame 196, 416–423 (2018). https://doi.org/10.1016/j.combustflame.2018.07.001

    Article  Google Scholar 

  19. Hajilou, M., Brown, M.Q., Brown, M.C., Belmont, E.: Investigation of the structure and propagation speeds of n-heptane cool flames. Combust. Flame 208, 99–109 (2019). https://doi.org/10.1016/j.combustflame.2019.06.020

    Article  Google Scholar 

  20. Brown, M.Q., Belmont, E.L.: Effects of ozone on n-heptane low temperature chemistry and premixed cool flames. Combust. Flame 225, 20–30 (2021). https://doi.org/10.1016/j.combustflame.2020.10.029

    Article  Google Scholar 

  21. Brown, M.C., Belmont, E.L.: Experimental characterization of ozone-enhanced n-decane cool flames and numerical investigation of equivalence ratio dependence. Combust. Flame 230, 111429 (2021). https://doi.org/10.1016/j.combustflame.2021.111429

    Article  Google Scholar 

  22. Kawasaki, A., Inakawa, T., Kasahara, J., Goto, K., Matsuoka, K., Matsuo, A., Funaki, I.: Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster. Proc. Combust. Inst. 37, 3461–3469 (2019). https://doi.org/10.1016/j.proci.2018.07.070

    Article  Google Scholar 

  23. Zhao, P., Liang, W., Deng, S., Law, C.K.: Initiation and propagation of laminar premixed cool flames. Fuel 166, 477–487 (2016). https://doi.org/10.1016/j.fuel.2015.11.025

    Article  Google Scholar 

  24. Foucher, F., Higelin, P., Mounaïm-Rousselle, C., Dagaut, P.: Influence of ozone on the combustion of n-heptane in a HCCI engine. Proc. Combust. Inst. 34, 3005–3012 (2013). https://doi.org/10.1016/j.proci.2012.05.042

    Article  Google Scholar 

  25. Romano, M.P., Radulescu, M.I., Higgins, A.J., Lee, J.H.S.: Sensitization of pentane-oxygen mixtures to DDT via cool flame oxidation. Combust. Flame 132, 387–394 (2003). https://doi.org/10.1016/S0010-2180(02)00463-7

    Article  Google Scholar 

  26. Shchelkin, K.I., Sokolik, A.S.: The influence of the “chemical presensitisation’’ on the initiation of the detonation wave. ACTA Physicochim. U.R.S.S. 7, 589–596 (1937)

    Google Scholar 

  27. Basevich, V.Y., Lidskii, B.V., Frolov, S.M.: Mechanisms of the amplification of a shock wave passing through a cool flame zone. Russ. J. Phys. Chem. B 4, 101–109 (2010). https://doi.org/10.1134/S1990793110010161

    Article  Google Scholar 

  28. Romano, M.P., Radulescu, M.I., Higgins, A.J., Lee, J.H.S., Pitz, W.J., Westbrook, C.K.: Sensitization of hydrocarbon-oxygen mixtures to detonation via cool-flame oxidation. Proc. Combust. Inst. 29, 2833–2838 (2002). https://doi.org/10.1016/S1540-7489(02)80346-7

    Article  Google Scholar 

  29. Chaumeix, N., Imbert, B., Catoire, L., Paillard, C.E.: The onset of detonation behind shock waves of moderate intensity in gas phase. Combust. Sci. Technol. 186, 607–620 (2014). https://doi.org/10.1080/00102202.2014.883259

    Article  Google Scholar 

  30. Liang, W., Mével, R., Law, C.K.: Role of low-temperature chemistry in detonation of n-heptane/oxygen/diluent mixtures. Combust. Flame 193, 463–470 (2018). https://doi.org/10.1016/j.combustflame.2018.03.035

    Article  Google Scholar 

  31. Mével, R., Melguizo-Gavilanes, J., Radulescu, M.I.: ZND structure of cool detonation in dimethyl ether–oxygen–carbon dioxide mixtures. 11th Asia-Pacific Conference on Combustion (2017)

  32. Han, W., Ning, D., Mével, R., Liang, W., Law, C.K.: Role of low-temperature chemistry on the onset of detonation behind an incident shock wave. 27th ICDERS (2019)

  33. Sepulveda, J., Rousso, A., Ha, H., Chen, T., Cheng, V., Kong, W., Ju, Y.: Kinetic enhancement of microchannel detonation transition by ozone addition to acetylene mixtures. AIAA J. 57, 476–481 (2019). https://doi.org/10.2514/1.J057773

    Article  Google Scholar 

  34. Wang, C., Gu, G.T., Han, W.H., Cai, Y.: Role of \({\rm O}_3\) addition in the deflagration-to-detonation transition of an ethylene–oxygen mixture in a macroscale tube. Shock Waves 30, 781–787 (2020). https://doi.org/10.1007/s00193-020-00981-w

    Article  Google Scholar 

  35. Han, W., Huang, J., Wang, C.: Pulsating and cellular instabilities of hydrogen–oxygen detonations with ozone sensitization. Phys. Fluids 33, 076113 (2021). https://doi.org/10.1063/5.0055080

    Article  Google Scholar 

  36. Han, W., Liang, W., Wang, C., Wen, J.X., Law, C.K.: Spontaneous initiation and development of hydrogen–oxygen detonation with ozone sensitization. Proc. Combust. Inst. 38, 3575–3583 (2021). https://doi.org/10.1016/J.PROCI.2020.06.239

    Article  Google Scholar 

  37. Kumar, D.S., Ivin, K., Singh, A.V.: Sensitizing gaseous detonations for hydrogen/ethylene-air mixtures using ozone and \({\rm H}_2{\rm O}_2\) as dopants for application in rotating detonation engines. Proc. Combust. Inst. 38, 3825–3834 (2021). https://doi.org/10.1016/j.proci.2020.08.061

    Article  Google Scholar 

  38. Crane, J., Shi, X., Singh, A.V., Tao, Y., Wang, H.: Isolating the effect of induction length on detonation structure: hydrogen–oxygen detonation promoted by ozone. Combust. Flame 200, 44–52 (2019). https://doi.org/10.1016/j.combustflame.2018.11.008

    Article  Google Scholar 

  39. Yehia, O.R., Reuter, C.B., Ju, Y.: On the chemical characteristics and dynamics of n-alkane low-temperature multistage diffusion flames. Proc. Combust. Inst. 37, 1717–1724 (2019). https://doi.org/10.1016/j.proci.2018.06.161

    Article  Google Scholar 

  40. Ju, Y., Sun, W.: Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48, 21–83 (2015). https://doi.org/10.1016/j.pecs.2014.12.002

    Article  Google Scholar 

  41. Vu, T.M., Won, S.H., Ombrello, T., Cha, M.: Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow. Combust. Flame 161, 917–926 (2014). https://doi.org/10.1016/j.combustflame.2013.09.023

    Article  Google Scholar 

  42. Reuter, C.B., Won, S.H., Ju, Y.: Flame dynamics and structures of partially premixed cool flames. 54th AIAA Aerospace Sciences Meeting , San Diego, CA, AIAA Paper 2016–1207 (2016). https://doi.org/10.2514/6.2016-1207

  43. Shi, X., Crane, J., Wang, H.: Detonation and its limit in small tubes with ozone sensitization. Proc. Combust. Inst. 38, 3547–3554 (2021). https://doi.org/10.1016/j.proci.2020.06.133

    Article  Google Scholar 

  44. Magzumov, A.É., Kirillov, I.A., Rusanov, V.D.: Effect of small additives of ozone and hydrogen peroxide on the induction-zone length of hydrogen-air mixtures in a one-dimensional model of a detonation wave. Combust. Explos. Shock Waves 34, 338–341 (1998). https://doi.org/10.1007/BF02672728

    Article  Google Scholar 

  45. Mével, R., He, Y.Z.: Effect of oxygen atom precursors addition on LTC-affected detonation in DME-\({\rm O}_2\)\({\rm CO}_2\) mixtures. Shock Waves 30, 799–807 (2020). https://doi.org/10.1007/s00193-020-00953-0

    Article  Google Scholar 

  46. Rasband, W.S.: ImageJ (2022)

  47. Wang, Z., Zhang, X., Xing, L., Zhang, L., Herrmann, F., Moshammer, K., Qi, F., Kohse-Höinghaus, K.: Experimental and kinetic modeling study of the low-and intermediate-temperature oxidation of dimethyl ether. Combust. Flame 162, 1113–1125 (2015). https://doi.org/10.1016/j.combustflame.2014.10.003

    Article  Google Scholar 

  48. Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.L.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40, 1–18 (2008). https://doi.org/10.1002/kin.20285

    Article  Google Scholar 

  49. Ombrello, T., Won, S.H., Ju, Y., Williams, S.: Flame propagation enhancement by plasma excitation of oxygen. Part I: effects of \({\rm O}_3\). Combust. Flame 157, 1906–1915 (2010). https://doi.org/10.1016/j.combustflame.2010.02.005

    Article  Google Scholar 

  50. Ju, Y., Reuter, C.B., Won, S.H.: Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures. Combust. Flame 162, 3580–3588 (2015). https://doi.org/10.1016/j.combustflame.2015.06.014

    Article  Google Scholar 

  51. Reuter, C.B., Lee, M., Won, S.H., Ju, Y.: Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame 179, 23–32 (2017). https://doi.org/10.1016/j.combustflame.2017.01.028

    Article  Google Scholar 

  52. Browne, S., Ziegler, J., Bitter, N., Schmidt, B., Lawson, J., Shepherd, J.E.: Shock & detonation toolbox—numerical tools for shock and detonation wave modeling. https://shepherd.caltech.edu/EDL/PublicResources/sdt/ (2021)

  53. Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://cantera.org/ (2017)

  54. Ng, H.D., Ju, Y., Lee, J.H.S.: Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrog. Energy 32, 93–99 (2007). https://doi.org/10.1016/j.ijhydene.2006.03.012

    Article  Google Scholar 

  55. Mével, R., Rostand, F., Lemarié, D., Breyton, L., Shepherd, J.E.: Oxidation of n-hexane in the vicinity of the auto-ignition temperature. Fuel 236, 373–381 (2019). https://doi.org/10.1016/j.fuel.2018.09.009

    Article  Google Scholar 

  56. Boettcher, P.A., Mével, R., Thomas, V., Shepherd, J.E.: The effect of heating rates on low temperature hexane air combustion. Fuel 96, 392–403 (2012). https://doi.org/10.1016/j.fuel.2011.12.044

    Article  Google Scholar 

  57. Stagni, A., Schmitt, S., Pelucchi, M., Frassoldati, A., Kohse-Höinghaus, K., Faravelli, T.: Dimethyl ether oxidation analyzed in a given flow reactor: experimental and modeling uncertainties. Combust. Flame 240, 111998 (2022). https://doi.org/10.1016/j.combustflame.2022.111998

    Article  Google Scholar 

  58. Austin, J.M.: The Role of Instability in Gaseous Detonation. California Institute of Technology, Pasadena (2003)

    Google Scholar 

  59. Ng, H.D., Chao, J., Yatsufusa, T., Lee, J.H.S.: Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether–oxygen mixtures. Fuel 88, 124–131 (2009). https://doi.org/10.1016/j.fuel.2008.07.029

    Article  Google Scholar 

  60. Diakow, P., Cross, M., Ciccarelli, G.: Detonation characteristics of dimethyl ether and ethanol–air mixtures. Shock Waves 25, 231–238 (2015). https://doi.org/10.1007/s00193-015-0554-7

    Article  Google Scholar 

  61. Sanderson, S.R., Austin, J.M., Liang, Z., Pintgen, F., Shepherd, J.E., Hornung, H.G.: Reactant jetting in unstable detonation. Prog. Aerosp. Sci. 46, 116–131 (2010). https://doi.org/10.1016/j.paerosci.2009.11.002

    Article  Google Scholar 

  62. Mcloughlin, M.T.: Detonation propagation in a rotating detonation engine analogue with nonpremixed fuel-oxygen injection. Master thesis, Queen’s University. https://qspace.library.queensu.ca/handle/1974/29469 (2021)

  63. Shchelkin, K.I., Troshin, Y.K.: Gasdynamics of Combustion. Mono Book Corp., Baltimore (1965)

  64. Kaneshige, M., Shepherd, J.E.: Detonation Database. GALCIT, Pasadena (1997)

  65. Ng, H.D.: The effect of chemical reaction kinetics on the structure of gaseous detonations. PhD Thesis, McGill University (2005). https://escholarship.mcgill.ca/concern/theses/4b29b651q

  66. Han, W., Huang, J., Liang, W., Wang, C., Mével, R., Law, C.K.: Unsteady propagation of detonation with multi-stage heat release. Fuel 296, 120666 (2021). https://doi.org/10.1016/J.FUEL.2021.120666

    Article  Google Scholar 

  67. Mével, R., Gallier, S.: Structure of detonation propagating in lean and rich dimethyl ether–oxygen mixtures. Shock Waves 28, 955–966 (2018). https://doi.org/10.1007/s00193-018-0837-x

    Article  Google Scholar 

  68. Chatelain, K.P., He, Y., Mével, R., Lacoste, D.A.: Effect of the reactor model on steady detonation modeling. Shock Waves 31, 323–335 (2021). https://doi.org/10.1007/s00193-021-01022-w

    Article  Google Scholar 

  69. Joubert, F., Desbordes, D., Presles, H.N.: Detonation cellular structure in \({\rm NO}_2/{\rm N}_2{\rm O}_4\)-fuel gaseous mixtures. Combust. Flame 152, 482–495 (2008). https://doi.org/10.1016/j.combustflame.2007.11.005

  70. Sturtzer, M.O., Lamoureux, N., Matignon, C., Desbordes, D., Presles, H.N.: On the origin of the double cellular structure of the detonation in gaseous nitromethane and its mixtures with oxygen. Shock Waves 14, 45–51 (2004). https://doi.org/10.1007/s00193-004-0236-3

  71. Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N., Lee, J.H.S.: Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theory Model. 9, 385–401 (2005). https://doi.org/10.1080/13647830500307758

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA under Award No. NNX16AQ95A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Belmont.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1462 KB)

Supplementary file 2 (xlsx 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, M.C., Belmont, E.L. Effects of ozone addition and LTC progression on detonation of O\(_{3}\)-enhanced DME–O\(_{2}\). Shock Waves 33, 21–37 (2023). https://doi.org/10.1007/s00193-022-01113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01113-2

Keywords

Navigation