Skip to main content
Log in

Methods for compressible multiphase flows and their applications

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flows 12, 861–889 (1986). https://doi.org/10.1016/0301-9322(86)90033-9

    Article  MATH  Google Scholar 

  2. Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65(2), 259–279 (2007). https://doi.org/10.1090/S0033-569X-07-01051-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Zeidan, D.: Assessment of mixture two-phase flow equations for volcanic flows using Godunov-type methods. Appl. Math. Comput. 272, 707–719 (2016). https://doi.org/10.1016/j.amc.2015.09.038

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruce Stewart, H., Wendroff, B.: Two-phase flow: Models and methods. J. Comput. Phys. 56(3), 363–409 (1984). https://doi.org/10.1016/0021-9991(84)90103-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Liou, M.S., Chang, C.H., Nguyen, L., Theofanous, T.G.: How to solve compressible multifluid equations: a simple, robust, and accurate method. AIAA J. 46(9), 2345–2356 (2008). https://doi.org/10.2514/1.34793

    Article  Google Scholar 

  6. Saurel, R., Le Metayer, O., Massoni, J., Gavrilyuk, S.: Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16(3), 209–232 (2007). https://doi.org/10.1007/s00193-006-0065-7

    Article  MATH  Google Scholar 

  7. Hosangadi, A., Ahuja, V.: Numerical study of cavitation in cryogenic fluids. J. Fluids Eng. 127(2), 267–281 (2005). https://doi.org/10.1115/1.1883238

    Article  Google Scholar 

  8. Kunz, R.F., Boger, D.A., Stinebring, D.R., Chyczewski, T.S., Lindau, J.W., Gibeling, H.J., Venkateswaran, S., Govindan, T.: A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29(8), 849–875 (2000). https://doi.org/10.1016/S0045-7930(99)00039-0

    Article  MATH  Google Scholar 

  9. Saurel, R., Boivin, P., Le Métayer, O.: A general formulation for cavitating, boiling and evaporating flows. Comput. Fluids 128, 53–64 (2016). https://doi.org/10.1016/j.compfluid.2016.01.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Utturkar, Y., Wu, J., Wang, G., Shyy, W.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog. Aerosp. Sci. 41(7), 558–608 (2005). https://doi.org/10.1016/j.paerosci.2005.10.002

    Article  Google Scholar 

  11. Kim, H., Kim, H., Kim, C.: Computations for homogeneous multi-phase real fluid flows at all speeds. AIAA J. (2018). https://doi.org/10.2514/1.J056497

  12. Flåtten, T., Lund, H.: Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21(12), 2379–2407 (2011). https://doi.org/10.1142/S0218202511005775

    Article  MathSciNet  MATH  Google Scholar 

  13. Harlow, F.H., Amsden, A.A.: Fluid Dynamics: A LASL Monograph. Technical Report LA-4700, Los Alamos, New Mexico (1971)

  14. Wagner, W., Kretzschmar, H-J.: International steam tables: properties of water and steam based on the industrial formulation IAPWS-IF97. In: IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, pp. 7–150. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74234-0_3

  15. NIST: NIST reference fluid thermodynamic and transport properties database (REFPROP): version 8.0. http://www.nist.gov/srd/nist23.cfm (2010)

  16. Kunick, M., Kretzschmar, H.-J.: Guideline on the fast calculation of steam and water properties with the spline-based table look-up method (SBTL). Technical Report, The International Association for the Properties of Water and Steam (2015)

  17. Merkle, C.L., Feng, J.Z., Buelow, P.E.O.: Computational modeling of the dynamics of sheet cavitation. In: 3rd International Symposium on Cavitation. Grenoble, France (1998)

  18. Sauer, J., Schnerr, G.H.: Unsteady cavitating flow—a new cavitation model based on modified front capturing method and bubble dynamics. In: Summer Meeting, American Society of Mechanical Engineers; Fluids Engineering Division. American Society of Mechanical Enginners, Boston, Massachusetts (2000)

  19. Hertz, H.: Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann. Phys. 253, 177–193 (1882). https://doi.org/10.1002/andp.18822531002

    Article  Google Scholar 

  20. Hill, P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25(03), 593–620 (1966). https://doi.org/10.1017/S0022112066000284

    Article  Google Scholar 

  21. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4, 625–632 (2003)

    Google Scholar 

  22. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  MATH  Google Scholar 

  23. Venkateswaran, S., Merkle, C.L.: Dual time-stepping and preconditioning for unsteady computations. In: 33rd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics, Reno, Nevada, AIAA Paper 1995-78 (1995). https://doi.org/10.2514/6.1995-78

  24. Kim, K.H., Kim, C., Rho, O.H.: Methods for the accurate computations of hypersonic flows: I. AUSMPW+ Scheme. J. Comput. Phys. 174(1), 38–80 (2001). https://doi.org/10.1006/jcph.2001.6873

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, S., Kim, C., Rho, O.H., Hong, S.K.: Cures for the shock instability: Development of a shock-stable Roe scheme. J. Comput. Phys. 185(2), 342–374 (2003). https://doi.org/10.1016/S0021-9991(02)00037-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Liou, M.S.: A sequel to AUSM, Part II: AUSM\(^+\)-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  27. Ihm, S.W., Kim, C.: Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes. AIAA J. 46(12), 3012–3037 (2008). https://doi.org/10.2514/1.35097

    Article  Google Scholar 

  28. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoon, S., Jameson, A.: Lower–upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations. AIAA J. 26(9), 1025–1026 (1988). https://doi.org/10.2514/3.10007

    Article  Google Scholar 

  31. Yoon, S.H., Kim, C., Kim, K.H.: Multi-dimensional limiting process for three-dimensional flow physics analyses. J. Comput. Phys. 227(12), 6001–6043 (2008). https://doi.org/10.1016/j.jcp.2008.02.012

    Article  MathSciNet  MATH  Google Scholar 

  32. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids 18, 555–574 (1994). https://doi.org/10.1002/fld.1650180603

    Article  MathSciNet  MATH  Google Scholar 

  33. Kitamura, K., Liou, M.S., Chang, C.H.: Extension and comparative study of AUSM-family schemes for compressible multiphase flow simulations. Commun. Comput. Phys. 16(3), 632–674 (2014). https://doi.org/10.4208/cicp.020813.190214a

    Article  MathSciNet  MATH  Google Scholar 

  34. Müller, B.: Low-Mach-number asymptotics of the Navier–Stokes equations. J. Eng. Math. 34(1), 97–109 (1998). https://doi.org/10.1023/A:1004349817404

    Article  MathSciNet  MATH  Google Scholar 

  35. Pelanti, M.: Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model. Appl. Math. Comput. 310, 112–133 (2017). https://doi.org/10.1016/j.amc.2017.04.014

    Article  MathSciNet  MATH  Google Scholar 

  36. Meng, H., Yang, V.: A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. J. Comput. Phys. 189(7), 277–304 (2003). https://doi.org/10.1016/S0021-9991(03)00211-0

    Article  MATH  Google Scholar 

  37. Abgrall, R.: How to prevent oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996). https://doi.org/10.1006/jcph.1996.0085

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee, B.J., Toro, E.F., Castro, C.E., Nikiforakis, N.: Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state. J. Comput. Phys. 246, 165–183 (2013). https://doi.org/10.1016/j.jcp.2013.03.046

    Article  MathSciNet  MATH  Google Scholar 

  39. Shyue, K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156(1), 43–88 (1999). https://doi.org/10.1006/jcph.1999.6349

    Article  MathSciNet  MATH  Google Scholar 

  40. Hord, J.: Cavitation in Liquid Cryogens II: Hydrofoil. Technical Report CR-2156, Cleveland, Ohio (1973)

  41. Moore, M.J., Walters, P.T., Crane, R.I., Davidson, B.J.: Predicting the fog drop size in wet steam turbines. Wet Steam 4, 101–109 (1973)

    Google Scholar 

  42. Kermani, M.J., Gerber, A.G.: A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int. J. Heat Mass Transf. 46(17), 3265–3278 (2003). https://doi.org/10.1016/S0017-9310(03)00096-6

    Article  MATH  Google Scholar 

  43. Ahuja, V., Hosangadi, A., Mattick, S., Lee, C.P., Field, R.E., Ryan, H.: Computational analyses of pressurization in cryogenic tanks. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT, AIAA Paper 2008-4752 (2008). https://doi.org/10.2514/6.2008-4752

  44. Haselmaier, L.H., Field, R.E., Ryan, H.M., Dickey, J.C.: Overview of propellant delivery systems at the NASA John C. Stennis Space Center. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2006-4757 (2006). https://doi.org/10.2514/6.2006-4757

Download references

Acknowledgements

This research is supported by the program of National Research Foundation of Korea (NRF-2014M1A3A3A02034856), by Advanced Research Center Program (NRF-2013R1A5A1073861) through the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) contracted through Advanced Space Propulsion Research Center at Seoul National University, and by the Civil-Military Technology Cooperation Program. This work is also supported by the KISTI Supercomputing Center (KSC-2016-C3-0067, KSC-2017-G2-0004). The authors appreciate the valuable experimental data provided by Doosan Heavy Industries and Chungnam National University Cavitation Tunnel (CNU-CT). Finally, the comments and suggestions of the reviewers on the original manuscript are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kim.

Additional information

Communicated by D. Zeidan and H. D. Ng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Choe, Y., Kim, H. et al. Methods for compressible multiphase flows and their applications. Shock Waves 29, 235–261 (2019). https://doi.org/10.1007/s00193-018-0829-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0829-x

Keywords

Navigation