Skip to main content
Log in

Simulation and scaling analysis of a spherical particle-laden blast wave

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas–particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas–particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chojnicki, K., Clarke, A.B., Phillips, J.C.: A shock-tube investigation of the dynamics of gas-particle mixtures: Implications for explosive volcanic eruptions. Geophys. Res. Lett. 33, L15309 (2006). https://doi.org/10.1029/2006GL026414

    Article  Google Scholar 

  2. Abbasi, T., Abbasi, S.A.: Dust explosions-cases, causes, consequences, and control. J. Hazard. Mater. 140, 7–44 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.007

    Article  Google Scholar 

  3. Balakrishnan, K., Nance, D.V., Menon, S.: Simulation of impulse effects from explosive charges containing metal particles. Shock Waves 20, 217–239 (2010). https://doi.org/10.1007/s00193-010-0249-z

    Article  MATH  Google Scholar 

  4. Zhang, F., Frost, D.L., Thibault, P.A., Murray, S.B.: Explosive dispersal of solid particles. Shock Waves 10, 431–443 (2001). https://doi.org/10.1007/PL00004050

    Article  MATH  Google Scholar 

  5. Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26, 766–775 (1955). https://doi.org/10.1063/1.1722085

    Article  MathSciNet  MATH  Google Scholar 

  6. Brode, H.L.: Theoretical solutions of spherical shock tube blasts. Technical Report RM-1974, Rand Corporation Report (1957)

  7. Zarei, Z., Frost, D.L.: Simplified modeling of blast waves from metalized heterogeneous explosives simplified modeling of blast waves from metalized heterogeneous explosives. Shock Waves 21, 425–438 (2011). https://doi.org/10.1007/s00193-011-0316-0

    Article  Google Scholar 

  8. Boyer, D.W.: An experimental study of the explosion generated by a pressurized sphere. J. Fluid Mech. 9, 401–429 (1960). https://doi.org/10.1017/S0022112060001195

    Article  MATH  Google Scholar 

  9. Brode, H.L.: Blast wave from a spherical charge. Phys. Fluids 2, 217–229 (1959). https://doi.org/10.1063/1.1705911

    Article  MATH  Google Scholar 

  10. Liu, T., Khoo, B., Yeo, K.: The numerical simulations of explosion and implosion in air: use of a modified Harten’s TVD scheme. Int. J. Numer. Methods Fluids 31, 661–680 (1999). https://doi.org/10.1002/(SICI)1097-0363(19991030)31:4%3c661::AID-FLD866%3e3.0.CO;2-G

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, M.P.: A simplified analysis of spherical and cylindrical blast waves. J. Fluid Mech. 11, 1–15 (1961). https://doi.org/10.1017/S0022112061000810

    Article  MathSciNet  MATH  Google Scholar 

  12. McFadden, J.: Initial behavior of a spherical blast. J. Appl. Phys. 23, 1269–1275 (1952). https://doi.org/10.1063/1.1702047

    Article  MathSciNet  MATH  Google Scholar 

  13. Ling, Y., Haselbacher, A., Balachandar, S.: Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: Application to particle dispersal by blast wave. Int. J. Multiph. Flow 37, 1013–1025 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.002

    Article  Google Scholar 

  14. Ling, Y., Haselbacher, A., Balachandar, S., Najjar, F.M., Stewart, D.S.: Shock interaction with a deformable particle: Direct numerical simulations and point-particle modeling. J. Appl. Phys. 113, 013504 (2013). https://doi.org/10.1063/1.4772744

    Article  Google Scholar 

  15. Milne, A.: Detonation in heterogeneous mixtures of liquids and particles. Shock Waves 10, 351–362 (2000). https://doi.org/10.1007/s001930000062

    Article  MATH  Google Scholar 

  16. Ripley, R.C., Zhang, F., Lien, F.S.: Shock interaction of metal particles in condensed explosive detonation. AIP Conf. Proc. 845, 499–502 (2006). https://doi.org/10.1063/1.2263369

    Article  Google Scholar 

  17. Zhang, F., Thibault, P.A., Link, R.: Shock interaction with solid particles in condensed matter and related momentum transfer. Proc. R. Soc. Lond. A Math. 459, 705–726 (2003). https://doi.org/10.1098/rspa.2002.1045

    Article  MathSciNet  MATH  Google Scholar 

  18. Tanguay, V., Higgins, A., Zhang, F.: A simple analytical model for reactive particle ignition in explosives. Propellants Explos. Pyrotech. 32, 371–384 (2007). https://doi.org/10.1002/prep.200700041

    Article  Google Scholar 

  19. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010). https://doi.org/10.1146/annurev.fluid.010908.165243

    Article  MATH  Google Scholar 

  20. Parmar, M., Haselbacher, A., Balachandar, S.: Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106, 084501 (2011). https://doi.org/10.1103/PhysRevLett.106.084501

    Article  Google Scholar 

  21. Parmar, M., Haselbacher, A., Balachandar, S.: Equation of motion for a sphere in equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352–375 (2012). https://doi.org/10.1017/jfm.2012.109

    Article  MathSciNet  MATH  Google Scholar 

  22. Annamalai, S., Balachandar, S.: Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows. J. Fluid Mech. 816, 381–411 (2017). https://doi.org/10.1017/jfm.2017.77

    Article  MathSciNet  MATH  Google Scholar 

  23. Parmar, M., Haselbacher, A., Balachandar, S.: On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. A 366, 2161–2175 (2008). https://doi.org/10.1098/rsta.2008.0027

    Article  MATH  Google Scholar 

  24. Parmar, M., Haselbacher, A., Balachandar, S.: Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48, 1273–1276 (2010). https://doi.org/10.2514/1.J050161

    Article  Google Scholar 

  25. Ling, Y., Haselbacher, A., Balachandar, S.: Importance of unsteady contributions to force and heating for particles in compressible flows. Part 1: Modeling and analysis for shock-particle interaction. Int. J. Multiph. Flow 37, 1026–1044 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.001

    Article  Google Scholar 

  26. Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P., Balachandar, S.: Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments. Phys. Fluids 24, 113301 (2012). https://doi.org/10.1063/1.4768815

    Article  Google Scholar 

  27. Parmar, M., Haselbacher, A., Balachandar, S.: Modeling of the unsteady force for shock-particle interaction. Shock Waves 19, 317–329 (2009). https://doi.org/10.1007/s00193-009-0206-x

    Article  MATH  Google Scholar 

  28. Clift, R., Gauvin, W.H.: The motion of particles in turbulent gas streams. Proc. Chemeca 1, 14–28 (1970)

    Google Scholar 

  29. Whitaker, S.: Forced convection heat transfer correlations for flow in pipes, past flat plates, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18, 361–371 (1972). https://doi.org/10.1002/aic.690180219

    Article  Google Scholar 

  30. Ling, Y., Balachandar, S., Parmar, M.: Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys. Fluids 28, 033304 (2016). https://doi.org/10.1063/1.4942184

    Article  Google Scholar 

  31. Ling, Y., Parmar, M., Balachandar, S.: A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Int. J. Multiph. Flow 57, 102–114 (2013). https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.005

    Article  Google Scholar 

  32. Zarei, Z., Frost, D.L., Timofeev, E.V.: Numerical modelling of the entrainment of particles in inviscid supersonic flow. Shock Waves 21, 341–355 (2011). https://doi.org/10.1007/s00193-011-0311-5

    Article  Google Scholar 

  33. Balachandar, S.: A scaling analysis for point particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35, 801–810 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.013

    Article  Google Scholar 

  34. Davis, S.L., Dittmann, T.B., Jacobs, G.B., Don, W.S.: Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio. J. Appl. Mech. Tech. Phys. 54(6), 900–912 (2013). https://doi.org/10.1134/S0021894413060059

    Article  Google Scholar 

  35. Luo, K., Luo, Y., Jin, T., Fan, J.: Studies on shock interactions with moving cylinders using immersed boundary method. Phys. Rev. Fluids 2, 064302 (2017). https://doi.org/10.1103/PhysRevFluids.2.064302

    Article  Google Scholar 

  36. Mehta, Y., Neal, C., Jackson, T.L., Balachandar, S., Thakur, S.: Shock interaction with three-dimensional face centered cubic array of particles. Phys. Rev. Fluids 1, 054202 (2016). https://doi.org/10.1103/PhysRevFluids.1.054202

    Article  Google Scholar 

  37. Sridharan, P., Jackson, T.L., Zhang, J., Balachandar, S.: Shock interaction with one-dimensional array of particles in air. J. Appl. Phys. 117, 075902 (2015). https://doi.org/10.1063/1.4913217

    Article  Google Scholar 

  38. Mei, R., Adrian, R.J.: Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323–341 (1992). https://doi.org/10.1017/S0022112092003434

    Article  MATH  Google Scholar 

  39. Fox, T.W., Rackett, C.W., Nicholls, J.A.: Shock wave ignition of magnesium powders. In: Proceedings of 11th International Symposium Shock Tubes and Waves, pp. 262–268. University of Washington Press, Seattle, WA (1978)

  40. Feng, Z.G., Michaelides, E.E.: Unsteady heat transfer from a sphere at small peclet numbers. J. Fluid Eng. Trans. ASME 118, 96–102 (1996). https://doi.org/10.1115/1.2817522

    Article  Google Scholar 

  41. Roe, P.L.: Approximate Riemann solver, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1006/jcph.1997.5705

    Article  MathSciNet  MATH  Google Scholar 

  42. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  43. Barth, T.J.: A 3D upwind Euler solver for unstructured meshes. AIAA Paper 91-1548 (1991). https://doi.org/10.2514/6.1991-1548

  44. Haselbacher, A.: A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction. AIAA Paper 2005-0879 (2005). https://doi.org/10.2514/6.2005-879

  45. Haselbacher, A., Najjar, F., Ferry, J.: An efficient and robust particle-localization algorithm for unstructured grids. J. Comput. Phys. 225, 2198–2213 (2007). https://doi.org/10.1016/j.jcp.2007.03.018

    Article  MATH  Google Scholar 

  46. Ling, Y., Haselbacher, A., Balachandar, S.: A numerical source of small-scale number-density fluctuations in Eulerian-Lagrangian simulations of multiphase flows. J. Comput. Phys. 229, 1828–1851 (2010). https://doi.org/10.1016/j.jcp.2009.11.011

    Article  MathSciNet  MATH  Google Scholar 

  47. Mankbadi, M.R., Balachandar, S.: Compressible inviscid instability of rapidly expanding spherical material interfaces. Phys. Fluids 24(3), 034106 (2012). https://doi.org/10.1063/1.3689183

    Article  Google Scholar 

  48. Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987). https://doi.org/10.1007/BF00277710

    Article  Google Scholar 

  49. Frost, D.L., Goroshin, S., Ripley, R., Zhang, F.: Jet formation during explosive particle dispersal. Military Aspects of Blast and Shock 21, Jerusalem (2010)

  50. Xu, T., Lien, F.S., Ji, H., Zhang, F.: Formation of particle jetting in a cylindrical shock tube. Shock Waves 23, 619–634 (2013). https://doi.org/10.1007/s00193-013-0472-5

    Article  Google Scholar 

  51. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Dover, New York (1978)

    Google Scholar 

  52. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959). https://doi.org/10.1016/B978-1-4832-0088-0.50001-3

  53. Taylor, G.I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. 201, 159–174 (1950). https://doi.org/10.1098/rspa.1950.0049

    Article  MATH  Google Scholar 

  54. Marble, F.E.: Dynamics of a dusty gas. Annu. Rev. Fluid Mech. 2, 397–446 (1970). https://doi.org/10.1146/annurev.fl.02.010170.002145

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378. The authors would also acknowledge the support from the High Performance and Research Computing Services at Baylor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ling.

Additional information

Communicated by D. Frost and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Balachandar, S. Simulation and scaling analysis of a spherical particle-laden blast wave. Shock Waves 28, 545–558 (2018). https://doi.org/10.1007/s00193-017-0799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0799-4

Keywords

Navigation