Skip to main content
Log in

Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper reports an experimental investigation on the effects of explosion depth and tube width on the water jet induced by an underwater electrical discharge in a narrow rectangular tube. The water jet formation and bubble structure were evaluated from the images recorded by a high-speed video camera. Two typical patterns of jet formation and four general patterns of bubble implosion were observed, depending on the explosion depth and tube width. The velocity of the water jet was calculated from the recorded images. The jet velocity was observed to depend on not only the explosion depth and energy, but also on the tube width. We proposed an empirical formula defining the water jet velocity in the tube as a function of the tube width and explosion depth and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hirano, T., Komatsu, M., Saeki, T., Uenohara, H., Takahashi, A., Takayama, K., Yoshimoto, T.: Enhancement of fibrinolytics with a laser-induced liquid jet. Lasers Surg. Med. 29(4), 360–368 (2001)

    Article  Google Scholar 

  2. Nakagawa, A., Hirano, T., Komatsu, M., Sato, M., Uenohara, H., Ohyama, H., Kusaka, Y., Shirane, R., Takayama, K., Yoshimoto, T.: Holmium:YAG laser-induced liquid jet knife: possible novel method for dissection. Lasers Surg. Med. 31(2), 129–135 (2002)

  3. Kedrinskii, V.K., Makarov, A.I., Stebnovskii, S.V., Takayama, K.: Explosive eruption of volcanoes: some approaches to simulation. Combust. Explos. Shock Waves 41(6), 777–784 (2005)

    Article  Google Scholar 

  4. Kedrinskii, V.K.: Gas-dynamic signs of explosive eruptions of volcanoes. 1. Hydrodynamic analogs of the pre-explosion state of volcanoes, dynamics of the three-phase magma state in decompression waves. J. Appl. Mech. Tech. Phys. 49(6), 891–898 (2008)

    Article  Google Scholar 

  5. Kedrinskii, V.K.: Gas-dynamic signs of explosive eruptions of volcanoes. 2. Model of homogeneous-heterogeneous nucleation. Specific features of destruction of the cavitating magma. J. Appl. Mech. Tech. Phys. 50(2), 309–317 (2009)

    Article  Google Scholar 

  6. Cole, R.H.: Underwater Explosions. Princeton University Press, Princeton (1948)

    Book  Google Scholar 

  7. Zamyshlyaev, B.V., Yakovlev, Y.S.: Dynamic Loads During Underwater Explosion. Sudostroenie, Leningrad (1967)

  8. Korobeinikov, V.P., Khristoforov, B.D.: Underwater explosion. Itogi. Nauki. Tekh. Gidromekh. 9, 54–119 (1976)

    Google Scholar 

  9. Kedrinskii, V.K.: Surface effects at underwater explosions (review). Zh. Prikl. Mekh. i Tekh. Fiz. 19(4), 66–87 (1978)

    Google Scholar 

  10. Snay, H.G.: Hydrodynamics of underwater explosions. In: Proceedings of the Symposium on Naval Hydrodynamics, pp. 325–352 (1956)

  11. Kedrinskii, V.K.: Surface effects at underwater explosions (review). J. Appl. Mech. Tech. Phys. 19(4), 474–491 (1978)

    Article  MathSciNet  Google Scholar 

  12. Kedrinskii, V.K.: Hydrodynamics of Explosion: Experiments and Models. Springer, Berlin (2005)

    Google Scholar 

  13. Gibson, D.C., Blake, J.R.: The growth and collapse of bubbles near deformable surfaces. J. Appl. Sci. Res. 38(1), 215–224 (1982)

    Article  Google Scholar 

  14. Blake, J.R., Gibson, D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123–140 (1981)

    Article  Google Scholar 

  15. Robinson, P.B., Blake, J.R., Kodama, T., Shima, A., Tomita, Y.: Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 8225–8237 (2001)

    Article  Google Scholar 

  16. Xie, W.F., Liu, T.G., Khoo, B.C.: The simulation of cavitating flows induced by underwater shock and free surface interaction. Appl. Numer. Math. 57(5–7), 734–745 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chahine, G.L.: Interaction between an oscillating bubble and a free surface. Trans. J. Fluids Eng. 99, 709–716 (1977)

    Article  Google Scholar 

  18. Ohki, T., Nakagawa, A., Hirano, T., Hashimoto, T., Menezes, V., Jokura, H., Uenohara, H., Sato, Y., Saito, T., Shirane, R., Tominaga, T., Takayama, K.: Experimental application of pulsed Ho: YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device. Lasers Surg. Med. 34, 227–234 (2004)

    Article  Google Scholar 

  19. Hirano, T., Nakagawa, A., Uenohara, H., Ohyama, H., Jokura, H., Takayama, K., Shirane, R.: Pulsed liquid jet dissector using holmium: YAG laser-a novel neurosurgical device for brain incision without impairing vessels. Acta Neurochir. 145, 401–406 (2003)

  20. Tominaga, T., Nakagawa, A., Hirano, T., Sato, J., Kato, K., Hosseini, S.H.R., Takayama, K.: Application of underwater shock wave and laser-induced liquid jet to neurosurgery. Shock Waves 15(1), 55–67 (2006)

  21. Tagawa, Y., Oudalov, N., Peters, I.R., van der Meer, D., Sun, C., Prosperetti, A., Lohse, D.: Highly focused supersonic microjets. Phys. Rev. X. 2(3), 031002, 1–10 (2012)

  22. Peters, I.R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D., van der Meer, D.: Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587–605 (2013)

    Article  MATH  Google Scholar 

  23. Yoh, J.J., Jang, H., Park, M., Han, T., Hah, J.: A bio-ballistic micro-jet for drug injection into animal skin using a Nd: YAG laser. Shock Waves 26(1), 39–43 (2016)

    Article  Google Scholar 

  24. Komatsu, M.: Fundamental experiments of water jet released from micro-tube with micro-discharge. Annu Rep Iwate Med Univ Sch Lib Arts Sci 40, 17–26 (2005)

    Google Scholar 

  25. Komatsu, M.: Behavior of bubble and shock wave generated by underwater electric discharge with coaxial electrodes. Annu Rep Iwate Med Univ Sch Lib Arts Sci 41, 17–24 (2006)

    Google Scholar 

  26. Shervani-Tabar, M.T., Eslamian, A.: Dynamics of a vapour bubble inside a vertical rigid cylinder. In: Proceedings of the 16th Australasian Fluid Mechanics Conference, Gold Coast, pp. 1420–1426 (2007)

  27. Smith, N.D., Roever, W.L.: Liquid seismic explosive and method of using. J. Acoust. Soc. Am. 44(4) (1968)

  28. Wright, H.A., Tobey, J.P.: Acoustic generator of the spark discharge type. J. Acoust. Soc. Am. 45(1) (1969)

  29. Hirai, T., Imaida, Y.: Exploding wire phenomena and pressure wave generation in electrohydraulic forming. J. Soc. Mater. Sci. Jpn. 34(387), 1412–1417 (1985)

    Article  Google Scholar 

  30. Kedrinskii, V.K.: Negative pressure profile in cavitation zone at underwater explosion near free surface. Acta Astron. 3(7–8), 623–632 (1976)

    Article  Google Scholar 

  31. Kedrinskii, V.K.: Nonlinear problems of cavitation breakdown of liquids under explosive loading (review). J. Appl. Mech. Tech. Phys. 34(3), 361–377 (1993)

    Article  Google Scholar 

  32. Berngardt, A.R., Kedrinskii, V.K., Pal’chikov, E.I.: Evolution of internal structure of zone of liquid fracture at pulse loading. Zh. Prikl. Mekh. i Tekh. Fiz. 36(2), 99–105 (1995)

    Google Scholar 

  33. Kolsky, H., Lewis, J.P., Sampson, M.T., Shearman, A.C., Snow, C.I.: Splashes from underwater explosion. Proc R Soci Lond A Math Phys Eng Sci 196, 379–402 (1949)

    Article  Google Scholar 

  34. Zaonegin, V.L., Kozachenko, L.S., Kostyuchenko, V.N.: Experimental study of gas bubble and sultan growth at underwater explosion. Zh. Prikl. Mekh. i Tekh. Fiz. 1(2) (1960)

  35. Stepanov, V.G., Sipilin, P.M., Navagin, Y.S., Pankratov, V.P.: Hydroexplosive Stamping of Marine Structural Elements. Sudostroenie, Leningrad (1966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Koita.

Additional information

Communicated by H. Kleine and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koita, T., Zhu, Y. & Sun, M. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube. Shock Waves 27, 257–270 (2017). https://doi.org/10.1007/s00193-016-0654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0654-z

Keywords

Navigation