Skip to main content
Log in

Microsize and initial pressure effects on shock wave propagation in a tube

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 30 October 2014

Abstract

In this paper, the shock wave propagation in a channel with a micrometric hydraulic diameter is numerically simulated for an initial Mach number \(M_{s}=2.61\). The obtained values of the Mach number along the tube are compared to experimental and numerical data given in the literature. The microscale effects on the flow behavior, such as shock wave attenuation and pressure increase behind the shock wave, are amplified by further reducing the scaling ratio (or Reynolds number) of the flow. This reduction is obtained by either decreasing the hydraulic diameter \(D_\mathrm{H}\) or the initial driven gas pressure \(P_1\). Under these conditions, the flow behavior changes drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Glass, I.I., Sislian, J.P.: Nonstationary Flows and Shock Waves. Oxford Sciences Publications, Oxford (1994)

    Google Scholar 

  2. Duff, R.E.: Shock tube performance at initial low pressure. Phys. Fluids 4(2), 207–216 (1959)

    Article  Google Scholar 

  3. Roshko, A.: On flow duration in low pressure shock tube. Phys. Fluids 3(6), 835–842 (1960)

    Article  Google Scholar 

  4. Mirels, H.: Test time in low pressure shock tubes. Phys. Fluids 6(9), 1201–1214 (1963)

    Article  MATH  Google Scholar 

  5. Zeitoun, D.E., Imbert, M.: Interaction between the unsteady boundary layer and inviscid hot flow in a shock tube. AIAA J. 17(8), 821–829 (1979)

    Article  Google Scholar 

  6. Oh, C.K., Oran, E.S., Sinkovits, R.S.: Computations of high speed, high Knudsen number microchanels flows. J. Thermophys. Heat Transf. 11(4), 497–508 (1997)

    Article  Google Scholar 

  7. Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channels. In: Lu, F.K. (ed.) Proceedings of 24th Int, Symp on Shock Waves, pp. 1321–1326 (2001)

  8. Raju, R., Roy, S.: Hydrodynamic prediction of high speed microflows, AIAA paper 4010. In: 33rd AIAA Fluid Dynamics Conference, 23–26 Jun. Orlando, Florida (2003)

  9. Brouillette, M.: Shock waves at microscales. Shock Wave J. 13(1), 3–12 (2003)

    Article  Google Scholar 

  10. Zeitoun, D.E., Burtschell, Y.: Navier Stokes computations in micro shock tubes. Shock Waves 15(3–4), 241–246 (2006)

    Article  MATH  Google Scholar 

  11. Austin, J.M., Bodony, D.J.: Wave propagation in gaseous small-scale channel flows. Shock Waves 21(6), 547–557 (2011)

    Article  Google Scholar 

  12. Mirshekari, G., Brouillette, M., Giordano, J., Hebert, C., Parisse, J.D., Perrier, P.: Shock waves in microchannels. J. Fluid Mech. 724, 259–283 (2013)

    Article  MATH  Google Scholar 

  13. Russell, D.A.: Shock-wave strengthening by area convergence. J. Fluid Mech. 27(2), 305–314 (1967)

    Article  Google Scholar 

  14. Mirels, H.: Correlation formulas for laminar shock tube boundary layers. Phys. Fluids 9(7), 1265–1272 (1966)

  15. Kogan, M.N.: Rarified gas dynamics. Plenum Press, New York (1969)

    Book  Google Scholar 

  16. Karniadakis, G., Beskok, A.: Micro flows Fundamentals and Simulation. Springer, Berlin (2000)

    Google Scholar 

  17. Burtschell, Y., Cardoso, M., Zeitoun, D.E.: Numerical analysis of reducing driver gas contamination in impulse shock tunnels. AIAA J. 39(12), 2357–2365 (2001)

    Article  Google Scholar 

  18. Liu, M.S.: Mass flux schemes and connection to shock instability. J. Comput. Phys. 160, 623–646 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Zeitoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeitoun, D.E. Microsize and initial pressure effects on shock wave propagation in a tube. Shock Waves 24, 515–520 (2014). https://doi.org/10.1007/s00193-014-0512-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0512-9

Keywords

Navigation