Skip to main content
Log in

Statistical behavior of post-shock overpressure past grid turbulence

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

When a shock wave ejected from the exit of a 5.4-mm inner diameter, stainless steel tube propagated through grid turbulence across a distance of 215 mm, which is 5–15 times larger than its integral length scale \(L_{u}\), and was normally incident onto a flat surface; the peak value of post-shock overpressure, \(\Delta P_{\mathrm{peak}}\), at a shock Mach number of 1.0009 on the flat surface experienced a standard deviation of up to about 9 % of its ensemble average. This value was more than 40 times larger than the dynamic pressure fluctuation corresponding to the maximum value of the root-mean-square velocity fluctuation, \(u^{\prime }= 1.2~\hbox {m}/\hbox {s}\). By varying \(u^{\prime }\) and \(L_{u}\), the statistical behavior of \(\Delta P_{\mathrm{peak}}\) was obtained after at least 500 runs were performed for each condition. The standard deviation of \(\Delta P_{\mathrm{peak}}\) due to the turbulence was almost proportional to \(u^{{\prime }}\). Although the overpressure modulations at two points 200 mm apart were independent of each other, we observed a weak positive correlation between the peak overpressure difference and the relative arrival time difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(a_{\infty }\) :

Speed of sound in upstream flow

\(C\) :

Correlation coefficient

\(d\) :

Grid thickness

\(F(s)\) :

Laplace transform of \(f (t)\)

\(f (t)\) :

Recovered signal

\(G(s)\) :

Laplace transform of \(g (t)\)

\(g (t)\) :

Recorded signal

\(H(s)\) :

Laplace transform of \(h\)

\(h(\tau )\) :

Device transfer function

\(i\) :

Serial run number

\(j\) :

Imaginary unit

\(k\) :

Integer

\(L\) :

Grid mesh size

\(L_{u}\) :

Integral length scale

\(M\) :

Mach number

\(M_\mathrm{t}\) :

Turbulent Mach number, \(=u^{\prime }/a_\infty \)

\(m\) :

Integer

\(n\) :

Integer

\(N\) :

Number of runs performed for the same condition

\(P_{\infty }\) :

Static pressure of upstream flow

\(R\) :

Shock wave propagation distance, Fig. 1b

\(R_{\lambda }\) :

Reynolds number based on Taylor’s microscale

\(s\) :

Complex parameter in Laplace transform

\(t\) :

Time

\(U_{\infty }\) :

Upstream flow speed

\(u^{\prime }\) :

Root-mean-square velocity fluctuation

\(x\) :

Coordinate in the direction of main flow

\(y\) :

Coordinate in the span-wise direction

\(z\) :

Coordinate in the vertical direction

\(\beta \) :

\(\Delta P_{\mathrm{peak}}\) / \(P_\infty \), normalized peak overpressure

\(\beta _{\mathrm{w}/\mathrm{o grid}}\) :

\(\beta \) without grid

\(\tilde{\beta }\left( {U_\infty } \right) \) :

\(\beta \left( {U_\infty } \right) /\overline{\beta _{\mathrm{w}/\mathrm{o grid}} \left( {U_\infty } \right) }\)

\(\chi \) :

Heaviside function

\(\Delta \,P\) :

Post-shock overpressure

\(\Delta \,P_{0}\) :

Post-shock overpressure behind the reflected shock wave that is theoretically obtained from the shock–tube relation, constant value

\(\Delta \, P_{\mathrm{peak}}\) :

Peak value of \(\varDelta P\)

\(\nu \) :

Kinematic viscosity

\(\lambda _{u}\) :

Taylor’s microscale

\(\theta \) :

Half apex angle, Fig. 1b

\(\rho _{\infty }\) :

Density of upstream flow

\(\sigma \) :

Solidity (blockage ratio)

\(\sigma _{\mathrm{IH}}\) :

Standard deviation of \(\tilde{\beta }\) due to an apparent overpressure fluctuation before shock wave arrival

\(\sigma _{\mathrm{SG}}\) :

Standard deviation of \(\tilde{\beta }\) due to reproducibility of a shock wave generator

\(\sigma _{\mathrm{TF}}\) :

Standard deviation of \(\tilde{\beta }\) due to turbulence

\(\tau \) :

Arrival time of a shock wave, or time notation used in Appendix

\(\tau _{\mathrm{BA}}\) :

\(\tau _{\mathrm{B}} -\tau _{\mathrm{A}}\), relative arrival time of a shock wave

\(\xi \) :

\(({0.5\rho _\infty u{\prime }^{2}/\overline{\beta (0)} P_\infty })^{0.5}\)

\(\overline{\left\{ \hbox { } \right\} }\) :

Ensemble average

\(\overline{\overline{\left\{ \hbox { } \right\} }}\) :

Time average

References

  1. Bass, H.E., Layton, B.A., Bolen, L.N., Raspet, R.: Propagation of medium strength shock waves through the atmosphere. J. Acoust. Soc. Am. 82(1), 306–310 (1987)

    Article  Google Scholar 

  2. Raspet, R., Bass, H.E., Yao, L., Boulanger, P., McBride, W.E.: Statistical and numerical study of the relationship between turbulence and sonic boom characteristics. J. Acoust. Soc. Am. 96(6), 3621–3626 (1994)

    Article  Google Scholar 

  3. Boulanger, P., Raspet, R., Bass, H.E.: Sonic boom propagation through a realistic turbulent atmosphere. J. Acoust. Soc. Am. 98(6), 3412–3417 (1995)

    Article  Google Scholar 

  4. Lee, R.A., Downing, J.M.: Comparison of measured and predicted lateral distribution of sonic boom overpressures from the United States Air Force sonic boom database. J. Acoust. Soc. Am. 99(2), 768–776 (1996)

  5. Ribner, H.S.: Cylindrical sound wave generated by shock–vortex interaction. AIAA J. 23(11), 1708–1715 (1985)

    Article  Google Scholar 

  6. Takayama, F., Ishii, Y., Sakurai, A., Kambe, T.: Self-interaction in shock wave and vortex interaction. Fluid Dyn. Res. 12(6), 343–348 (1993)

    Article  Google Scholar 

  7. Dosanjh, D.S., Weeks, T.M.: Interaction of a starting vortex as well as a vortex street with a traveling shock wave. AIAA J. 3(2), 216–223 (1965)

    Article  MATH  Google Scholar 

  8. Ribner, H.S., Morris, P.J., Chu, W.H.: Laboratory simulation of development of superbooms by atmospheric turbulence. J. Acoust. Soc. Am. 53(3), 929–928 (1973)

    Article  Google Scholar 

  9. Ganjehi, L., Marchiano, L.: Coulouvrat, F., Thomas, J.L.: Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium. J. Acoust. Soc. Am. 124(1), 57–71 (2008)

  10. Lipkens, B., Blackstock, D.T.: Model experiments to study sonic boom propagation through turbulence, Part 1: general results. J. Acoust. Soc. Am. 103(1), 148–158 (1998)

    Article  Google Scholar 

  11. Kim, J.H., Sasoh, A., Matsuda, A.: Modulations of a weak shock wave through a turbulent slit jet. Shock Waves 20(4), 339–345 (2010)

    Article  MATH  Google Scholar 

  12. Keller, J., Merzkirch, W.: Interaction of a normal shock wave with a compressible turbulent flow. Exp. Fluids 8, 241–248 (1990)

    Article  Google Scholar 

  13. Honkan, A., Andreopoulos, J.: Rapid compression of grid-generated turbulence by a moving shock wave. Phys. Fluids A. 4(11), 2562–2572 (1992)

    Article  Google Scholar 

  14. Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock wave-turbulence interactions. Annu. Rev. Fluid. Mech. 32, 309–345 (2000)

    Article  MathSciNet  Google Scholar 

  15. Briassulis, G., Agui, J.H., Andreopoulos, Y.: The structure of weakly compressible grid-generated turbulence. J. Fluid. Mech. 432, 219–283 (2001)

    MATH  Google Scholar 

  16. Agui, J.H., Briassulis, G., Andreopolos, Y.: Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid. Mech. 524, 143–195 (2005)

    Article  MATH  Google Scholar 

  17. Honkan, A., Watkins, C.B., Andreopoulos, J.: Experimental study of interactions of shock wave with free-stream turbulence. J. Fluids Eng. 116, 763–769 (1994)

    Article  Google Scholar 

  18. Briassulis, G., Honkan, A., Andreopoulos, J., Watkins, C.B.: Application of hot-wire anemometry in shock-tube flows. Exp. Fluids 19, 29–37 (1995)

    Article  Google Scholar 

  19. Shugaev, F.V., Shtemenko, L.S., Terentiev, E.N., Dokukina, O.I.: Influence of a propagating plane shock wave on grid turbulence. In: Fluxes and Structures in Fluids: Physics of Geospheres-2009. Moscow. 2009, pp. 352–332 (2009)

  20. Barre, S., Alem, D., Bonnet, J.P.: Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34(5), 968–974 (1996)

    Article  Google Scholar 

  21. Barre, S., Alem, D., Bonnet, J.P.: Reply by the authors to H. S. Ribner. AIAA J. 36(3), 495–495 (1998)

    Article  Google Scholar 

  22. Hesselink, L., Sturtevant, B.: Propagation of weak shocks through a random medium. J. Fluid Mech. 196, 513–553 (1988)

    Article  Google Scholar 

  23. Xanthos, S., Briassulis, G., Andreopoulos, Y.: Interaction of decaying freestream turbulence with a moving shock wave: pressure field. J. Propul. Power. 18(6), 1289–1297 (2002)

    Article  Google Scholar 

  24. Lele, S.K.: Shock-jump relations in a turbulent flow. Phys. Fluids A. 4(12), 2900–2905 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rotman, D.: Shock wave effects on a turbulent flow. Phys. Fluids A. 3, 1792–1806 (1991)

    Article  MATH  Google Scholar 

  26. Bhagatwala, A., Lele, S.K.: Interaction of a converging spherical shock wave with isotropic turbulence. Phys. Fluids 24(8), 085102 (2012)

    Article  Google Scholar 

  27. Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee, S., Lele, S., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)

    Article  Google Scholar 

  29. Hasegawa, T., Noguchi, S.: Numerical study of a turbulent flow compressed by a weak shock wave. Int. J. Comput. Fluid Dyn. 8(1), 63–75 (1997)

    Article  MATH  Google Scholar 

  30. Averiyanov, M., Blanc-Benon, P., Cleveland, R.O., Khokhlova, V.: Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media. J. Acous. Soc. Am. 129(4), 1760–1772 (2011)

    Article  Google Scholar 

  31. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)

    Article  Google Scholar 

  32. Donzis, D.A.: Amplification factors in shock-turbulence interactions: effect of shock thickness. Phys. Fluids 24(1), 011705 (2012)

  33. Jamme, S., Cazalbou, J.-B., Torres, F., Chassaing, P.: Direct numerical simulation. Flow of the interaction between a shock wave and various types of isotropic turbulence. Turb. Combust. 68, 227–268 (2002)

    Article  MATH  Google Scholar 

  34. Donzis, D.A.: Shock structure in shock–turbulence interactions. Phys. Fluids 24, 126101 (2012)

    Article  Google Scholar 

  35. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach-number effects in canonical shock turbulence interaction. J. Fluid Mech. 717, 293–321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Oguchi, H., Funabiki, K., Sato, S., Hatakeyama, M.: A free-flight experiment of projectiles ranging from high subsonic to high supersonic Mach numbers. Shock Waves 1, 233–236 (1991)

    Article  Google Scholar 

  37. Wilcox, D.J.: Numerical Laplace transformation and inversion. Int. J. Elect. Eng. Educ. 15, 247–265 (1978)

    Google Scholar 

  38. Inoue, H., Ishida, H., Kishimoto, K., Shibuya, T.: Measurement of impact load by using an inverse analysis technique: comparison of methods for estimating the transfer function and its application to the instrumented Charpy impact test. JSME Intl. J. Ser. 1(34), 453–458 (1991)

    Google Scholar 

Download references

Acknowledgments

The first author thanks Dr. Osami Kitoh, Professor Emeritus, Nagoya Institute of Technology, for his valuable suggestion that motivated us to use grid turbulence for shock wave interaction. The authors would like to express their gratitude to Messrs. Katsuyoshi Kumazawa and Takao Sumi from Technical Division and Dr. Shigeru Yokota and Mr. Hiroki Saito, all affiliated with Nagoya University, for their valuable technical assistance. We appreciate the technical assistance of Mr. Kakuei Suzuki in the numerical processing of overpressure signals. This research was supported by the Japan Aerospace Exploration Agency as project No. 27-J-J6711 and as Grant-in-Aid for Scientific Research (S) 22226014 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Sasoh.

Additional information

Communicated by M. Brouillette.

Appendix: Recovering the pressure signal through deconvolution using numerical Laplace transform

Appendix: Recovering the pressure signal through deconvolution using numerical Laplace transform

The basic scheme of the following method of signal recovery is referenced from Refs. [37] and [38], while the details in the formulation are the original contribution by this paper. The Laplace transform of a device transfer function, \(H\left( s \right) \), was obtained from shock tube experiments:

$$\begin{aligned}&g_0 (t)=\int _{-\infty }^\infty {h(\tau )} f_0 (t-\tau )\mathrm{d}\tau ,\end{aligned}$$
(12)
$$\begin{aligned}&G_0 (s)=H(s)F_0 (s), \end{aligned}$$
(13)

where \(g (t)\) denotes a signal as a function of recorded time, \(f(t)\) is the signal to be recovered, and \(h(\tau )\) is the transfer function. The functions \(F\)(s), \(G\)(s), and \(H\)(s) are the Laplace transforms of \(f\)(t), \(g\)(t), and \(h\)(t), respectively. The subscript 0 represents the data obtained in the calibration experiment. In this study, the calibration experiment was conducted using a shock tube. The combination of a pressure transducer and mount holder that was identical to that used in the wind tunnel was flush-mounted on the end wall of the shock tube. Assuming that \(f_0 (t)\) is expressed by a Heaviside function up to a finite time of \(t=T\), we obtain:

$$\begin{aligned} f_0 (t)=\Delta P_0 \chi (t)=\left\{ {\begin{array}{ll} 0&{} \quad (t\le 0) \\ \Delta P_0 &{} \quad (0\le t\le T) \\ \end{array}} \right. , \end{aligned}$$
(14)

where \(\Delta P_0\) is obtained from Rankine–Hugoniot relation applied to the reflected shock wave, having a constant value.

\(H(s)\) is numerically obtained from Eq. (13) as follows:

$$\begin{aligned} \frac{1}{H(s)}&= \frac{F_0 (s)}{G_0 (s)},\end{aligned}$$
(15)
$$\begin{aligned} F_0 (s)&= \frac{\Delta P_0 }{s}. \end{aligned}$$
(16)

For numerical transform, \(t\) and \(s \)are discretized as follows:

$$\begin{aligned} t_m&= \left( {2m-1} \right) \Delta t=\frac{\left( {2m-1} \right) T}{4n},\end{aligned}$$
(17)
$$\begin{aligned} \Delta t&= \frac{T}{2\left( {2n} \right) },\end{aligned}$$
(18)
$$\begin{aligned} s_k&= \left\{ {\begin{array}{ll} \alpha +j\left( {2k-1} \right) \Delta \omega ,&{} \quad k>0 \\ \alpha +j\left( {2k+1} \right) \Delta \omega =s_{\left| k \right| } *&{} \quad k<0 \\ \end{array}} \right. . \end{aligned}$$
(19)

The reciprocity conditions are set to:

$$\begin{aligned}&N=n,\end{aligned}$$
(20)
$$\begin{aligned}&\Delta \omega =\frac{\pi }{T}. \end{aligned}$$
(21)

Following Ref. 37, \(\alpha \) is set to:

$$\begin{aligned} \alpha =\frac{2\pi }{T}=2\Delta \omega . \end{aligned}$$
(22)

From Eqs. (16) and (19):

$$\begin{aligned} F_0 (k)=\frac{\Delta P_0 }{\alpha +j\left( {2k-1} \right) \Delta \omega }. \end{aligned}$$
(23)

By definition, \(G_{0}\) is:

$$\begin{aligned}&G_0 (s)=\sum _{m=1}^{2n} {g_0 \left( {t_m } \right) \mathrm{e}^{-s_k t_m }\left( {2\Delta t} \right) } \nonumber \\&\qquad \;\,\quad =\frac{T}{2n}\sum _{m=1}^{2n} {g_0 \left( {t_m } \right) \mathrm{e}^{-s_k t_m }} , \nonumber \\&G_0 (k)=\frac{T}{2n}\sum _{m=1}^{2n} {\mathrm{e}^{-\alpha t_m }g_0 \left( {t_m } \right) \mathrm{e}^{-j\frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi }} ,\end{aligned}$$
(24)
$$\begin{aligned}&\hbox {Re}\left[ {G_0 (k)} \right] =\frac{T}{2n}\sum _{m=1}^{2n} {\mathrm{e}^{-\alpha t_m }g_0 \left( {t_m } \right) }\nonumber \\&\qquad \qquad \qquad \quad \;\times \,{\cos \left\{ {\frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi } \right\} } ,\end{aligned}$$
(25)
$$\begin{aligned}&\hbox {Im}\left[ {G_0 (k)} \right] =-\frac{T}{2n}\sum _{m=1}^{2n} {\mathrm{e}^{-\alpha t_m }g_0 \left( {t_m } \right) }\nonumber \\&\qquad \qquad \qquad \quad \;\times \,{\sin \left\{ {\frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi } \right\} } . \end{aligned}$$
(26)

From Eqs. (15), (23), (25), and (26), we obtain the components in the Laplace transform of the device transfer function:

$$\begin{aligned}&\hbox {Re}\left[ {\frac{1}{H(k)}} \right] ==\frac{\Delta P_0 \left\{ {\alpha \hbox {Re}\left[ {G_0 (k)} \right] -\left( {2k-1} \right) \Delta \omega \hbox {Im}\left[ {G_0 (k)} \right] } \right\} }{\left\{ {\alpha \hbox { Re}\left[ {G_0 (k)} \right] -\left( {2k-1} \right) \Delta \omega \hbox { Im}\left[ {G_0 (k)} \right] } \right\} ^{2}+\left\{ {\alpha \hbox { Im}\left[ {G_0 (k)} \right] +\left( {2k-1} \right) \Delta \omega \hbox { Re}\left[ {G_0 (k)} \right] } \right\} ^{2}},\end{aligned}$$
(27)
$$\begin{aligned}&\hbox {Im}\left[ {\frac{1}{H(k)}} \right] =\frac{-\Delta P_0 \left\{ {\alpha \hbox {Im}\left[ {G_0 (k)} \right] +\left( {2k-1} \right) \Delta \omega \hbox {Re}\left[ {G_0 (k)} \right] } \right\} }{\left\{ {\alpha \hbox { Re}\left[ {G_0 (k)} \right] -\left( {2k-1} \right) \Delta \omega \hbox { Im}\left[ {G_0 (k)} \right] } \right\} ^{2}+\left\{ {\alpha \hbox { Im}\left[ {G_0 (k)} \right] +\left( {2k-1} \right) \Delta \omega \hbox { Re}\left[ {G_0 (k)} \right] } \right\} ^{2}}. \end{aligned}$$
(28)

Next, in the wind tunnel experiment, the Laplace transform of a recovered overpressure, \(F(s)\), is obtained from a recorded signal, \(g(t)\), by:

$$\begin{aligned} F(s)&= \frac{G(s)}{H(s)},\end{aligned}$$
(29)
$$\begin{aligned} G(s)&= \int _0^\infty {g(t)} \mathrm{e}^{-st}\mathrm{d}t,\end{aligned}$$
(30)
$$\begin{aligned} G(k)&= \frac{T}{2n}\sum _{m=1}^{2n} {\mathrm{e}^{-\alpha t_m }g\left( {t_m } \right) \mathrm{e}^{-j\frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi }} ,\end{aligned}$$
(31)
$$\begin{aligned} F(k)&= \hbox {Re}\left[ {F(k)} \right] +j\hbox { Im}\left[ {F(k)} \right] ,\\&\left\{ {\begin{array}{l} \hbox {Re}[F(k)]=\hbox { Re}\left[ {G(k)} \right] \hbox { Re}\left[ {\frac{1}{H(k)}} \right] \\ \qquad \qquad \qquad \,\, -\hbox {Im}\left[ {G(k)} \right] \hbox { Im}\left[ {\frac{1}{H(k)}} \right] \\ \hbox {Im}[F(k)]=\hbox {Re}\left[ {G(k)} \right] \hbox { Im}\left[ {\frac{1}{H(k)}} \right] \\ \qquad \qquad \qquad \,\, +\hbox {Im}\left[ {G(k)} \right] \hbox { Re}\left[ {\frac{1}{H(k)}} \right] \\ \end{array}} \right. .\nonumber \end{aligned}$$
(32)

Finally, the overpressure \(f(t)\) is recovered through inverse Laplace transform:

$$\begin{aligned} f(t_m )&= \frac{2\mathrm{e}^{\alpha t_m }}{T}\hbox { Re}\left[ {\sum _{k=1}^N {F\left( k \right) \mathrm{e}^{j\frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi }} } \right] ,\nonumber \\&= \frac{2\mathrm{e}^{\alpha t_m }}{T}\sum _{k=1}^N \left\{ \hbox {Re}\left[ {F\left( k \right) } \right] \cos \frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi \right. \nonumber \\&\left. -\hbox {Im}\left[ {F\left( k \right) } \right] \sin \frac{\left( {2k-1} \right) \left( {2m-1} \right) }{4n}\pi \right\} . \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasoh, A., Harasaki, T., Kitamura, T. et al. Statistical behavior of post-shock overpressure past grid turbulence. Shock Waves 24, 489–500 (2014). https://doi.org/10.1007/s00193-014-0507-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0507-6

Keywords

Navigation