Skip to main content
Log in

Adaptive multistart Gauss–Newton approach for geodetic data inversion of earthquake source parameters

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We present an adaptive multistart Gauss–Newton approach (AMGNA) to inverse earthquake source parameters with multiple geodetic data sets. The AMGNA can be combined with uniform and nonuniform sampling schemes to generate initial parameters. The AMGNA searches for the improved solution with an adaptively determined number of initial parameters based on a given stable level represented by a target probability; this process involves a first-order approximate uncertainty calculation and performs a joint inversion involved variance component estimation. We test the efficiency and reliability of the AMGNA with synthetic global positioning system and interferometric synthetic aperture radar data and apply the proposed approach to the 2009 Mw 6.3 L’Aquila earthquake and 2017 Mw 6.6 Bodrum–Kos earthquake. The results show that the AMGNA can retrieve well the designed source parameters by several simulated cases and estimate source parameters and uncertainties comparable to those of previous studies for real applications. The AMGNA can quickly estimate the source parameters and uncertainties within 0.5–25 min using six processes in parallel computing. Considering the easily implemented property of the nonuniform sampling scheme, our algorithm has potential applications in the fast and automatic inversion of earthquake source parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ainscoe EA, Elliott JR, Copley A, Craig TJ, Li T, Parsons BE, Walker RT (2017) Blind thrusting, surface folding, and the development of geological structure in the Mw 6.3 2015 Pishan (China) earthquake. J Geophys Res 122(11):9359–9382

    Article  Google Scholar 

  • Árnadóttir T, Segall P (1994) The 1989 Loma Prieta earthquake imaged from inversion of geodetic data. J Geophys Res 99(B11):21835–21855

    Article  Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems. Elsevier, Oxford

    Google Scholar 

  • Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19(7):2194–2211

    Article  Google Scholar 

  • Barnhart WD, Brengman CM, Li S, Peterson KE (2018) Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw 7.3 Darbandikhan, Iran/Iraq earthquake. Earth Planet Sci Lett 496:96–107

    Article  Google Scholar 

  • Beavan J, Fielding E, Motagh M, Samsonov S, Donnelly N (2011) Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data. Seismol Res Lett 82(6):789–799

    Article  Google Scholar 

  • Bürgmann R, Ayhan ME, Fielding EJ, Wright TJ, McClusky S, Aktug B et al (2002) Deformation during the 12 November 1999 Duzce, Turkey, earthquake, from GPS and InSAR data. Bull Seismol Soc Am 92(1):161–171

    Article  Google Scholar 

  • Carbone D, Currenti G, Del Negro C (2008) Multiobjective genetic algorithm inversion of ground deformation and gravity changes spanning the 1981 eruption of Etna volcano. J Geophys Res 113:B07406

    Google Scholar 

  • Cervelli P, Murray MH, Segall P, Aoki Y, Kato T (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106(B6):11217–11237

    Article  Google Scholar 

  • De Novellis V, Carlino S, Castaldo R, Tramelli A, De Luca C, Pino NA et al (2018) The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophys Res Lett 45(5):2193–2202

    Article  Google Scholar 

  • Elliott JR, Parsons B, Jackson JA, Shan X, Sloan RA, Walker RT (2011) Depth segmentation of the seismogenic continental crust: the 2008 and 2009 Qaidam earthquakes. Geophys Res Lett 38:L06305

    Article  Google Scholar 

  • Fukuda JI, Johnson KM (2010) Mixed linear—non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters. Geophys J Int 181(3):1441–1458

    Google Scholar 

  • Ganas A, Elias P, Valkaniotis S, Briole P, Kapetanidis V, Kassaras I, Barberopoulou A, Argyrakis P, Chouliaras G, Moshou A (2017) Co-seismic deformation and preliminary fault model of the July 20, 2017 M6.6 Kos earthquake. Aegean Sea Report. EMSC, 30 July 2017, Athens, Greece

  • Hendrix EMT, Tóth BG (2010) Introduction to nonlinear and global optimization. Springer, Berlin

    Book  Google Scholar 

  • Karasözen E, Nissen E, Büyükakpınar P, Cambaz MD, Kahraman M, Ertan EK et al (2018) The 2017 July 20 Mw 6.6 Bodrum–Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophys J Int 214(1):185–199

    Article  Google Scholar 

  • Li Z, Feng W, Xu Z, Cross P, Zhang J (2008) The 1998 Mw 5.7 Zhangbei-Shangyi (China) earthquake revisited: a buried thrust fault revealed with interferometric synthetic aperture radar. Geochem Geophys Geosyst 9(4):Q04026

    Article  Google Scholar 

  • Marchandon M, Vergnolle M, Sudhaus H, Cavalié O (2018) Fault geometry and slip distribution at depth of the 1997 Mw 7.2 Zirkuh earthquake: contribution of near-field displacement data. J Geophys Res 123(2):1904–1924

    Article  Google Scholar 

  • Menke W (2012) Geophysical data analysis: discrete inverse theory. Academic Press, New York

    Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Parsons B, Wright T, Rowe P, Andrews J, Jackson J, Walker R et al (2006) The 1994 Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys J Int 164(1):202–217

    Article  Google Scholar 

  • Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138(2):479–494

    Article  Google Scholar 

  • Serpelloni E, Anderlini L, Belardinelli ME (2012) Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L′ Aquila earthquake from inversion of GPS displacements. Geophys J Int 188(2):473–489

    Article  Google Scholar 

  • Shirzaei M, Walter TR (2009) Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: application to volcano interferometric synthetic aperture radar data. J Geophys Res 114:B10401

    Article  Google Scholar 

  • Sun J, Shen ZK, Bürgmann R, Wang M, Chen L, Xu X (2013) A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake. J Geophys Res 118(8):4599–4627

    Article  Google Scholar 

  • Teunissen PJG (1988) Towards a least-squares framework for adjusting and testing of both functional and stochastic model. Geodetic Computing Centre, Delft, MGP series no. 26, 2004 (Reprint 1988)

  • Tiryakioğlu İ, Aktuğ B, Yiğit CÖ, Yavaşoğlu HH, Sözbilir H, Özkaymak Ç et al (2018) Slip distribution and source parameters of the 20 July 2017 Bodrum–Kos earthquake (Mw 6.6) from GPS observations. Geodin Acta 30(1):1–14

    Article  Google Scholar 

  • Walters RJ, Elliott JR, Dagostino N, England PC, Hunstad I, Jackson JA et al (2009) The 2009 L’Aquila earthquake (central Italy): a source mechanism and implications for seismic hazard. Geophys Res Lett 36:L17312

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wen Y, He P, Xu C, Liu Y (2012) Source parameters of the 2009 L′Aquila earthquake, Italy from Envisat and ALOS satellite SAR images. Chin J Geophys 55(1):53–65 (in Chinese with English abstract)

    Google Scholar 

  • Weston J, Ferreira AMG, Funning GJ (2011) Global compilation of interferometric synthetic aperture radar earthquake source models: 1. Comparisons with seismic catalogs. J Geophys Res 116:B08408

    Article  Google Scholar 

  • Weston J, Ferreira AM, Funning GJ (2012) Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics 532:61–81

    Article  Google Scholar 

  • Wright TJ, Parsons BE, Jackson JA, Haynes M, Fielding EJ, England PC, Clarke PJ (1999) Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth Planet Sci Lett 172(1–2):23–37

    Article  Google Scholar 

  • Xu P (2003) A hybrid global optimization method: the multi-dimensional case. J Comput Appl Math 155(2):423–446

    Article  Google Scholar 

  • Xu P (2009) Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophys J Int 179(1):182–200

    Article  Google Scholar 

  • Xu PL (2016) The effect of errors-in-variables on variance component estimation. J Geod 90(8):681–701

    Article  Google Scholar 

  • Xu CJ, Ding KH, Cai J, Grafarend EW (2009) Methods of determining weight scaling factors for geodetic-geophysical joint inversion. J Geodyn 47(1):39–46

    Article  Google Scholar 

  • Xu CJ, Liu Y, Wen YM, Wang RJ (2010) Coseismic slip distribution of the 2008 Mw 7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data. Bull Seismol Soc Am 100(5B):2736–2749

    Article  Google Scholar 

  • Xu GY, Xu CJ, Wen YM (2018) Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: rupture of a blind reverve-slip fault near the Eastern Kopeh Dagh. Tectonophysics 731:131–138

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 41574002), the State Key Program of National Natural Science Foundation of China (Grant No. 41431069) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41721003).

Author information

Authors and Affiliations

Authors

Contributions

Yingwen Zhao performed the experiments, wrote and revised the manuscript; Caijun Xu designed the study, analyzed the experimental results and revised the manuscript.

Corresponding author

Correspondence to Caijun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, C. Adaptive multistart Gauss–Newton approach for geodetic data inversion of earthquake source parameters. J Geod 94, 17 (2020). https://doi.org/10.1007/s00190-020-01353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01353-z

Keywords

Navigation