Skip to main content
Log in

Improving reliability and efficiency of RTK ambiguity resolution with reference antenna array: BDS + GPS analysis and test

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Rapid and reliable ambiguity resolution is the key to high-precision global navigation satellite system-based applications. To improve the efficiency and reliability of ambiguity resolution, one effective method is equipping the reference station with an antenna array of known geometry instead of a single antenna. In this contribution, the benefits of reference antenna array-aided real-time kinematic (RTK) positioning are investigated. The mathematical relations between the number of reference antennas and the float baseline and ambiguity solutions are explored, and the closed-form formula of ambiguity dilution of precision (ADOP) is further presented. It is demonstrated that the maximum decrease in ADOP or the improvement in precision of float solutions is approximately 29.29% with the increase in the number of reference antennas. Then, we analyze the impact of errors (noises or biases) on the float baseline and ambiguity solutions. Finally, the performance of the array-aided RTK is evaluated with raw BDS and GPS observations in terms of the ambiguity resolution success rate, false alarm, wrong detection alarm, and the time-to-first-fix (TTFF). It is demonstrated that the array-aided RTK can deliver improved ambiguity success rates with respect to the standard one-reference-antenna RTK, especially when only single-frequency, single-system observations from fewer satellites are available. Moreover, the array-aided RTK can provide much more robust ambiguity resolution in the presence of biases. And the performance of suppressing false alarm and wrong detection alarm is improved as well. Additionally, the TTFF with single-frequency observations is also significantly shortened. One order of magnitude improvements in TTFF are achieved for most of the cases from the standard one-reference-antenna solutions to the three-reference-antenna solutions. The results confirm that the array-aided RTK ensures more reliable and efficient ambiguity resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brack A (2017) Reliable GPS + BDS RTK positioning with partial ambiguity resolution. GPS Solut 21(3):1083–1092

    Article  Google Scholar 

  • Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65(2):130–143

    Article  Google Scholar 

  • Euler HJ, Schaffrin B (1991) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: Schwarz K-P, Lachapelle G (eds) IAG symposia, kinematic systems in geodesy, surveying, and remote sensing, vol 107. Springer, New York, pp 285–295

    Chapter  Google Scholar 

  • Euler HJ, Keenan CR, Zebhauser BE, Wübbena G (2001) Study of a simplified approach in utilizing information from permanent reference station arrays. In: Proceedings of the ION GPS 2001, Salt Lake City, UT, pp 379–391

  • Gao Y, Li Z, Mclellan JF (1997) Carrier phase based regional area differential GPS for decimeter-level positioning and navigation. In: Proceedings of ION GPS 1997, Kansas City, MO, pp 1305–1313

  • Giorgi G, Teunissen PJG, Verhagen S, Buist PJ (2012) Instantaneous ambiguity resolution in global-navigation-satellite-system-based attitude determination applications: a multivariate constrained approach. J Guid Control Dyn 35(1):51–67

    Article  Google Scholar 

  • Han S, Rizos C (1996a) GPS network design and error mitigation for real-time continuous array monitoring systems. In: Proceedings of ION GPS 1996, Kansas City, MO, pp 1827–1836

  • Han S, Rizos C (1996b) Integrated methods for instantaneous ambiguity resolution using new-generation GPS receivers. In: Position, location and navigation symposium, IEEE PLANS 1996, pp 254–261

  • He K, Xu T, Förste C, Petrovic S, Barthelmes F, Jiang N, Flechtner F (2016) GNSS precise kinematic positioning for multiple kinematic stations based on a priori distance constraints. Sensors 16(4):470–480

    Article  Google Scholar 

  • Khodabandeh A (2014) Array-aided single-differenced satellite phase bias determination: methodology and results. In: 27th International technical meeting of the ION Satellite Division, Institute of Navigation, Manassas, VA, pp 2523–2532

  • Khodabandeh A, Teunissen PJG (2014) Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results. Meas Sci Technol 25(9):95801–95811

    Article  Google Scholar 

  • Kim J, Song J, No H, Han D, Kim D, Park B, Kee C (2017) Accuracy improvement of DGPS for low-cost single-frequency receiver using modified Flächen Korrektur parameter correction. ISPRS Int J Geo-Inf 6(7):222–242

    Article  Google Scholar 

  • Li B, Teunissen PJG (2014a) Array-aided CORS network ambiguity resolution. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet: international association of geodesy symposia. Springer, Berlin, pp 599–605

    Chapter  Google Scholar 

  • Li B, Teunissen PJG (2014b) GNSS antenna array-aided CORS ambiguity resolution. J Geod 88(4):363–376

    Article  Google Scholar 

  • Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88(2):99–112

    Article  Google Scholar 

  • Li W, Nadarajah N, Teunissen PJG, Khodabandeh A (2017) Array-aided single-frequency state-space RTK with combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations. J Surv Eng 143(4):4017006–4017015

    Article  Google Scholar 

  • Li H, Gao S, Li L, Jia C, Zhao L (2018) Real time precise relative positioning with moving multiple reference receivers. Sensors 18(7):2109–2125

    Article  Google Scholar 

  • Magnus JR (1988) Linear structures. London School of Economics and Political Science, Charles Griffin & Company LTD, London, Oxford University Press, New York

  • Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492

    Article  Google Scholar 

  • Odijk D, Arora BS, Teunissen PJG (2014) Predicting the success rate of long-baseline GPS + Galileo (partial) ambiguity resolution. J Navig 67(3):385–401

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG (2016) Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis. J Geod 90(11):1255–1278

    Article  Google Scholar 

  • Park B, Kee C (2010) The compact network RTK method: an effective solution to reduce GNSS temporal and spatial decorrelation error. J Navig 63(2):343–362

    Article  Google Scholar 

  • Parkinson BW, Spilker JJ (1996) Global positioning system: theory and applications, progress in astronautics and aerodynamics, vol 163–164. American Institute of Astronautics, Washington, DC

  • Paziewski J, Wielgosz P (2014) Assessment of GPS + Galileo and multi-frequency Galileo single-epoch precise positioning with network corrections. GPS Solut 18(4):571–579

    Article  Google Scholar 

  • Rao C (1973) Linear statistical inference and its applications, 2nd edn. Wiley, London

    Book  Google Scholar 

  • Raquet JF (1998) Development of a method for kinematic GPS carrier-phase ambiguity resolution using multiple reference receivers. Dissertation, University of Calgary

  • Ray JK, Canon ME, Fenton P (2000) GPS code and carrier multipath mitigation using a multi-antenna system. IEEE Trans Aerosp Electron Syst 37(1):183–195

    Article  Google Scholar 

  • Rizos C (2007) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solut 11(3):151–158

    Article  Google Scholar 

  • Schaer S, Beutler G, Rothacher M, Brockmann E, Wiget A, Wild U (1999) The impact of the atmosphere and other systematic errors on permanent GPS networks. In: Proceedings of the IAG symposium on positioning, Birmingham, UK, pp 373–380

  • Snay RA, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104

    Article  Google Scholar 

  • Song J, Park B, Kee C (2016) Comparative analysis of height-related multiple correction interpolation methods with constraints for network RTK in mountainous areas. J Navig 69(5):991–1010

    Article  Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. J Geod 70:65–82

    Article  Google Scholar 

  • Teunissen PJG (1997) A canonical theory for short GPS baselines. Part IV: precision versus reliability. J Geod 71(9):513–525

    Article  Google Scholar 

  • Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612

    Article  Google Scholar 

  • Teunissen PJG (2001) Integer estimation in the presence of biases. J Geod 75(7):399–407

    Article  Google Scholar 

  • Teunissen PJG (2012a) The affine constrained GNSS attitude model and its multivariate integer least-squares solution. J Geod 86(7):547–563

    Article  Google Scholar 

  • Teunissen PJG (2012b) A-PPP: array-aided precise point positioning with global navigation satellite systems. IEEE Trans Signal Process 60(6):2870–2881

    Article  Google Scholar 

  • Teunissen PJG, Odolinski R, Odijk D (2014) Instantaneous BeiDou + GPS RTK positioning with high cut-off elevation angles. J Geod 88(4):335–350

    Article  Google Scholar 

  • Tu R, Zhang P, Zhang R, Lu C, Liu J, Lu X (2017) The study and realization of BDS un-differenced network-RTK based on raw observations. Adv Space Res 59(11):2809–2818

    Article  Google Scholar 

  • Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54(4):361–376

    Article  Google Scholar 

  • Vollath U, Buecherl A, Landau H, Pagels C, Wagner B (2000) Multi-base RTK positioning using virtual reference stations. In: Proceedings of ION GPS 2000, 19–22 Sept, Salt Lake City, UT, USA, pp 123–131

  • Wang S, Deng J, Ou J, Nie W (2016) Three-step algorithm for rapid ambiguity resolution between reference stations within network RTK. J Navig 69(6):1310–1324

    Article  Google Scholar 

  • Wanninger L (1995) Improved ambiguity resolution by regional differential modelling of the ionosphere. In: Proceedings of ION GPS 1995, Palm Springs, CA, pp 55–62

  • Wanninger L (1999) The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions. In: Proceedings of ION GPS 1999, Nashville, USA, pp 1419–1427

  • Wu S, Zhao X, Pang C, Zhang L, Wang Y (2018) A new strategy of stochastic modeling aiming at BDS hybrid constellation in precise relative positioning. Adv Space Res. https://doi.org/10.1016/j.asr.2018.04.007

    Article  Google Scholar 

  • Wübbena G, Bagge A, Seeber G, Boeder V, Hankemeier P (1996) Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks. In: Proceedings of ION GPS 1996, Kansas City, USA, pp 1845–1852

  • Zhang L, Lv H, Wang D, Hou Y, Wu J (2015) Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output. J Geod 89(7):641–653

    Article  Google Scholar 

  • Zinas N, Parkins A, Ziebart M (2013) Improved network-based single-epoch ambiguity resolution using centralized GNSS network processing. GPS Solut 17(1):17–27

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61601506) and the Fundamental Research Funds for the Central University, China University of Geosciences (Wuhan) (No. G1323541876).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of (12)

According to (10) we have

$$ \begin{aligned} \varvec{Q}_{{\hat{\varvec{z}}_{1} \hat{\varvec{z}}_{1} }} & = \left( {\bar{\varvec{\varLambda }}^{\rm T} \left( {\varvec{Q}_{\varvec{\varPhi}} + \bar{\varvec{H}}\varvec{Q}_{{\hat{\varvec{b}}_{1} \hat{\varvec{b}}_{1} }} \bar{\varvec{H}}^{\rm T} } \right)^{ - 1} \bar{\varvec{\varLambda }}} \right)^{ - 1} \\ & {\kern 1pt} = \left( {\bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }} - \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}\left( {\bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \bar{\varvec{H}} + \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}} \right)^{ - 1} \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }}} \right)^{ - 1} \\ \end{aligned} $$
(20)

With \( \bar{\varvec{\varLambda }} = \varvec{e}_{n} \otimes\varvec{\varLambda} \), \( \bar{\varvec{H}} = \varvec{e}_{n} \otimes \varvec{G} \) and (8), we get the following transactional terms

$$ \begin{aligned} & \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }} = e \cdot \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}\\ & \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}} = e \cdot \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \varvec{G} \\ & \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \bar{\varvec{H}} = e \cdot \varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} \\ & \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}} = e \cdot \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G} \\ & \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }} = e \cdot \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}\\ \end{aligned} $$
(21)

where \( e\varvec{ = e}_{n}^{\rm T} \left( {\frac{1}{2}\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} \varvec{e}_{n} = \frac{2n}{n + 1} \).Taking (21) into (20) gives

$$ \begin{aligned} \varvec{Q}_{{\hat{\varvec{z}}_{1} \hat{\varvec{z}}_{1} }} & = \frac{1}{e} \cdot\varvec{\varLambda}^{ - 1} \left( {\varvec{Q}_{\varvec{\phi}}^{ - 1} - \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} + \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}} \right)^{ - 1} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} } \right)^{ - 1}\varvec{\varLambda}^{ - 1} \\ & {\kern 1pt} = \frac{1}{e} \cdot\varvec{\varLambda}^{ - 1} \left( {\varvec{Q}_{\varvec{\phi}} + \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G}} \right)^{ - 1} \varvec{G}^{\rm T} } \right)\varvec{\varLambda}^{ - 1} \\ & = \frac{n + 1}{2n}\varvec{Q}_{{\varvec{\hat{z}\hat{z}}}} \\ \end{aligned} $$

End of proof. □

Proof of (15) and (16)

With the errors in the observations, the float solutions in (3) are expressed as

$$ \begin{aligned} & \hat{\varvec{b}} = \varvec{Q}_{{\varvec{\hat{b}\hat{b}}}} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \left( {\varvec{p} +\varvec{\varepsilon}_{{\varvec{p},m}} -\varvec{\varepsilon}_{{\varvec{p},r}} } \right) \\ & \hat{\varvec{z}} =\varvec{\varLambda}^{ - 1} \left( {\varvec{\phi}- \varvec{G\hat{b}} +\varvec{\varepsilon}_{{\varvec{\phi},m}} -\varvec{\varepsilon}_{{\varvec{\phi},r}} } \right) \\ \end{aligned} $$

Then the impacts of the errors on the float solutions as shown in (15) can be immediately obtained.For the array-aided case, the errors in float solutions caused by the errors in observations are

$$ \begin{aligned} & \Delta \hat{\varvec{b}}_{1} = \varvec{Q}_{{\hat{\varvec{b}}_{1} \hat{\varvec{b}}_{1} }} \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \varvec{E}_{\varvec{P}} \\ & \Delta \hat{\varvec{z}}_{1} = \varvec{Q}_{{\hat{\varvec{z}}_{1} \hat{\varvec{z}}_{1} }} \bar{\varvec{\varLambda }}^{\rm T} \left( {\varvec{Q}_{\varvec{\varPhi}} + \bar{\varvec{H}}\varvec{Q}_{{\hat{\varvec{b}}_{1} \hat{\varvec{b}}_{1} }} \bar{\varvec{H}}^{\rm T} } \right)^{ - 1} \left( {\varvec{E}_{\varvec{\varPhi}} - \bar{\varvec{H}}\Delta \hat{\varvec{b}}_{1} } \right) \\ \end{aligned} $$
(22)

Taking \( \varvec{Q}_{{\hat{\varvec{b}}_{1} \hat{\varvec{b}}_{1} }} = \left( {\bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \bar{\varvec{H}}} \right)^{ - 1} \), \( \bar{\varvec{H}} = \varvec{e}_{n} \otimes \varvec{G} \), and (8) into (22), the first equation of (22) is simplified as \( \Delta \hat{\varvec{b}}_{1} = \left( {\frac{{\varvec{e}_{n}^{\rm T} \left( {\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} }}{{\varvec{e}_{n}^{\rm T} \left( {\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} \varvec{e}_{n} }} \otimes \left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G}} \right)^{ - 1} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} } \right)\varvec{E}_{\varvec{P}} \). With \( \varvec{e}_{n}^{\rm T} \left( {\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} = \frac{1}{n + 1}\varvec{e}_{n}^{\rm T} \), \( \varvec{e}_{n}^{\rm T} \left( {\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} \varvec{e}_{n} = \frac{n}{n + 1} \), \( \varvec{Q}_{{\varvec{\hat{b}\hat{b}}}} = \left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G}} \right)^{ - 1} \), and \( \varvec{E}_{\varvec{P}} = \left[ {\begin{array}{*{20}c} {\varvec{\varepsilon}_{{\varvec{p},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{p},r_{ 1} }}^{\rm T} } & {\varvec{\varepsilon}_{{\varvec{p},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{p},r_{2} }}^{\rm T} } & \cdots & {\varvec{\varepsilon}_{{\varvec{p},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{p},r_{n} }}^{\rm T} } \\ \end{array} } \right]^{\rm T} \), we get

$$ \begin{aligned} \Delta \hat{\varvec{b}}_{1} & = \frac{1}{n}\left( {\varvec{e}_{n}^{\rm T} \otimes \left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G}} \right)\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} } \right)\varvec{E}_{\varvec{P}} \\ & = \varvec{Q}_{{\varvec{\hat{b}\hat{b}}}} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \left( {\varvec{\varepsilon}_{{\varvec{p},m}} - \frac{1}{n}\sum\limits_{i = 1}^{n} {\varvec{\varepsilon}_{{\varvec{p},r_{i} }} } } \right) \\ \end{aligned} $$

For the second equation of (22), since \( \varvec{Q}_{{\hat{\varvec{z}}_{1} \hat{\varvec{z}}_{1} }} = \left( {\bar{\varvec{\varLambda }}^{\rm T} \left( {\varvec{Q}_{\varvec{\varPhi}} + \bar{\varvec{H}}\varvec{Q}_{{\hat{\varvec{b}}_{1} \hat{\varvec{b}}_{1} }} \bar{\varvec{H}}^{\rm T} } \right)^{ - 1} \bar{\varvec{\varLambda }}} \right)^{ - 1} \), we have

$$ \begin{aligned} \Delta \hat{\varvec{z}}_{1} & = \left( {\bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }} - \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}\left( {\bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \bar{\varvec{H}} + \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}} \right)^{ - 1} \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{\varLambda }}} \right)^{ - 1} \\ & \quad \times \left( {\bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} - \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}\left( {\bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{P}}^{ - 1} \bar{\varvec{H}} + \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} \bar{\varvec{H}}} \right)^{ - 1} \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} } \right)\left( {\varvec{E}_{\varvec{\varPhi}} - \bar{\varvec{H}}\Delta \hat{\varvec{b}}_{1} } \right) \\ \end{aligned} $$
(23)

With (21) as well as \( \bar{\varvec{\varLambda }}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} = \varvec{e}_{n}^{\rm T} \left( {\frac{1}{2}\varvec{D}_{\text{A}} \varvec{D}_{\text{A}}^{\rm T} } \right)^{ - 1} \otimes \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} = \frac{2}{n + 1}\varvec{e}_{n}^{\rm T} \otimes \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \), \( \bar{\varvec{H}}^{\rm T} \varvec{Q}_{\varvec{\varPhi}}^{ - 1} = \frac{2}{n + 1}\varvec{e}_{n}^{\rm T} \otimes \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \), and \( \varvec{E}_{\varvec{\varPhi}} = \left[ {\begin{array}{*{20}c} {\varvec{\varepsilon}_{{\varvec{\phi},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{\phi},r_{ 1} }}^{\rm T} } & {\varvec{\varepsilon}_{{\varvec{\phi},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{\phi},r_{ 2} }}^{\rm T} } & \cdots & {\varvec{\varepsilon}_{{\varvec{\phi},m}}^{\rm T} -\varvec{\varepsilon}_{{\varvec{\phi},r_{n} }}^{\rm T} } \\ \end{array} } \right]^{\rm T} \), (23) can be simplified as

$$ \begin{aligned} \Delta \hat{\varvec{z}}_{1} & = \frac{1}{e}\left( {\varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}- \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} + \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}} \right)^{ - 1} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}} \right)^{ - 1} \\ & \quad \times \left( {\frac{2}{n + 1}\varvec{e}_{n}^{\rm T} \otimes \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} - \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} + \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}} \right)^{ - 1} \left( {\frac{2}{n + 1}\varvec{e}_{n}^{\rm T} \otimes \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} } \right)} \right)\left( {\varvec{E}_{\varvec{\varPhi}} - \left( {\varvec{e}_{n} \otimes \varvec{G}} \right)\Delta \hat{\varvec{b}}_{1} } \right) \\ & = \frac{1}{n}\left( {\varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}- \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} + \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}} \right)^{ - 1} \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1}\varvec{\varLambda}} \right)^{ - 1} \\ & \quad \times \left( {\varvec{e}_{n}^{\rm T} \otimes \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} - \varvec{\varLambda Q}_{\varvec{\phi}}^{ - 1} \varvec{G}\left( {\varvec{G}^{\rm T} \varvec{Q}_{\varvec{p}}^{ - 1} \varvec{G} + \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} \varvec{G}} \right)^{ - 1} \left( {\varvec{e}_{n}^{\rm T} \otimes \varvec{G}^{\rm T} \varvec{Q}_{\varvec{\phi}}^{ - 1} } \right)} \right)\varvec{E}_{\varvec{\varPhi}} -\varvec{\varLambda}^{ - 1} \varvec{G}\Delta \hat{\varvec{b}}_{1} \\ & = \frac{1}{n}\varvec{\varLambda}^{ - 1} \sum\limits_{i = 1}^{n} {\left( {\varvec{\varepsilon}_{{\varvec{\phi},m}} -\varvec{\varepsilon}_{{\varvec{\phi},r_{i} }} } \right)} -\varvec{\varLambda}^{ - 1} \varvec{G}\Delta \hat{\varvec{b}}_{1} \\ & =\varvec{\varLambda}^{ - 1} \left( {\varvec{\varepsilon}_{{\varvec{\phi},m}} - \frac{1}{n}\sum\limits_{i = 1}^{n} {\varvec{\varepsilon}_{{\varvec{\phi},r_{i} }} } - \varvec{G}\Delta \hat{\varvec{b}}_{1} } \right) \\ \end{aligned} $$

End of proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhao, X., Zhang, L. et al. Improving reliability and efficiency of RTK ambiguity resolution with reference antenna array: BDS + GPS analysis and test. J Geod 93, 1297–1311 (2019). https://doi.org/10.1007/s00190-019-01246-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01246-w

Keywords

Navigation