Skip to main content
Log in

Drift mode accelerometry for spaceborne gravity measurements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Antonucci A et al (2011) LISA Pathfinder data analysis. Class Q Grav 28:094006. doi:10.1088/0264-9381/28/9/094006

    Article  Google Scholar 

  • Antonucci F, Cavalleri A, Dolesi R, Hueller M, Nicolodi D, Tu HB, Vitale S, Weber WJ (2012) Interaction between stray electrostatic fields and a charged free-falling test mass. Phys Rev Lett 108:181101. doi:10.1103/PhysRevLett.108.181101

    Article  Google Scholar 

  • Armano M et al (2009) LISA Pathfinder: the experiment and the route to LISA. Class Q Grav 26:094001. doi:10.1088/0264-9381/26/9/094001

    Article  Google Scholar 

  • Bencze WJ, DeBra DB, Herman L, Holmes T, Adams M, Keiser GM, Everitt CWF (2006) On-orbit performance of the Gravity Probe B drag-free translation control system. In: Proceedings of 29th AAS guid control, vol 624, pp AAS 06–AAS 083

  • Bhanderi D (2005) Spacecraft attitude determination with Earth albedo corrected sun sensor measurements. Dissertation, Aalborg University

  • Canuto E (2008) Drag-free and attitude control for the GOCE satellite. Automatica 44:1799–1780. doi:10.1016/j.automatica.2007.11.023

    Article  Google Scholar 

  • Cavalleri A, Ciani G, Dolesi R, Heptonstall A, Hueller M, Nicolodi D, Rowan S, Tombolato D, Vitale S, Wass PJ, Weber WJ (2009) A new torsion pendulum for testing the limits of free-fall for LISA test masses. Class Q Grav 26:094017. doi:10.1088/0264-9381/26/9/094017

    Article  Google Scholar 

  • Cavalleri A, Ciani G, Dolesi R, Heptonstall A, Hueller M, Nicolodi D, Rowan S, Tombolato D, Vitale S, Wass PJ, Weber WJ (2009) Increased Brownian force noise from molecular impacts in a constrained volume. Phys Rev Lett 103:140601. doi:10.1103/PhysRevLett.103.140601

    Article  Google Scholar 

  • Cervantes FG, Flatscher R, Gerardi D, Burkhardt J, Gerndt R, Nofrarias M, Reiche J, Heinzel G, Danzmann K, Boté LG, Martin V, Mateos I, Lobo A (2013) LISA Technology Package flight hardware test campaign. APS Conf Ser 467:141–150

    Google Scholar 

  • Christophe B, Marque JP, Foulon B (2010) In-orbit data verification of the accelerometers of the ESA GOCE mission. Société Francaise d’Astronomie et d’Astrophysique SF2A-2010, pp 113–116

  • Danzmann K, Rudiger A (2003) LISA technology concept, status, prospects. Class Q Grav 20:S1–S9. doi:10.1088/0264-9381/20/10/301

    Article  Google Scholar 

  • DeBra DB, Conklin JW (2011) Measurement of drag and its cancellation. Class Q Grav 28:094015. doi:10.1088/0264-9381/28/9/094015

    Article  Google Scholar 

  • Ditmar P, Teixeira da Encarnacao J, Hashemi Farahani H (2012) Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod 86:441–465. doi:10.1007/s00190-011-0531-6

    Article  Google Scholar 

  • Dolesi R, Bortoluzzi D, Bosetti P, Carbone L, Cavalleri A, Cristofolini I, DaLio M, Fontana G, Fontanari V, Foulon B, Hoyle CD, Hueller M, Nappo F, Sarra P, Shaul DNA, Sumner T, Weber WJ, Vitale S (2003) Gravitational sensor for LISA and its technology demonstration mission. Class Q Grav 20:S99–S108. doi:10.1088/0264-9381/20/10/312

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer core mission. Space Sci S 17:419–432. doi:10.1023/A:1026104216284

    Article  Google Scholar 

  • Everitt CWF, Debra DB, Parkinson BW, Turneaure JP, Conklin JW, Heifetz MI, Keiser GM, Silbergleit AS, Holmes T, Kolodziejczak J, Al-Meshari M, Mester JC, Muhlfelder B, Solomonik VG, Stahl K, Worden PW Jr, Bencze W, Buchman S, Clarke B, Al-Jadaan A, Al-Jibreen H, Li J, Lipa JA, Lockhart JM, Al-Suwaidan B, Taber M, Wang S (2011) Gravity probe B: final results of a space experiment to test general relativity. Phys Rev Lett 106:221101–2211011. doi:10.1103/PhysRevLett.106.221101

    Article  Google Scholar 

  • Frommknecht B, Lamarre D, Meloni M, Bigazzi A, Floberghagen R (2011) GOCE level 1b data processing. J Geod 85:759–775. doi:10.1007/s00190-011-0497-4

    Article  Google Scholar 

  • Gerardi D, Allen G, Conklin JW, Sun KX, DeBra DB, Buchman S, Gath P, Fichter W, Byer RL, Johann U (2014) Invited article: Advanced drag-free concepts for future space-based interferometers: acceleration noise performance. Rev Sci Instrum 85:011301. doi:10.1063/1.4862199

    Article  Google Scholar 

  • Grynagier A, Fichter W, Vitale S (2009) The LISA Pathfinder drift mode: implementation solutions for a robust algorithm. Class Q Grav 26:094007. doi:10.1088/0264-9381/26/9/094007

    Article  Google Scholar 

  • Josselin V (1999) Architecture mixte pour les acc/’el/’erom/‘etres ultrasensibles d/’edi/’es aux missions spatiales de Physique Fondamentale. Dissertation, University of Orsay

  • Kasdin NJ (1995) Discrete simulation of colored noise and stochastic processes and \(1/f^\alpha \) power law noise generation. Proc IEEE 83:802–827. doi:10.1109/5.381848

    Article  Google Scholar 

  • Lange B (1964) The drag-free satellite. AIAA J 2:1590–1606. doi:10.2514/3.55086

    Article  Google Scholar 

  • Meyer U, Jäggi A, Beutler G (2012) The impact of attitude control on GRACE accelerometry and orbits. Geodesy for Planet Earth. Springer, Berlin, Heidelberg, pp 139–146

    Book  Google Scholar 

  • Mitryk SJ, Mueller G (2012) Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects. Phys Rev D 86:122006. doi:10.1103/PhysRevD.86.122006

    Article  Google Scholar 

  • Montenbruck M, Gill E (2001) Satellite orbits, models, methods, applications. Springer, Berlin

    Google Scholar 

  • U.S. Naval Research Laboratory: Space and Science Division (2012) Horizontal Wind Model07 (HWM07), Ver. HWM071308E_DWM07B104i. US Naval Research Laboratory: Space and Science Division, Washington, DC

  • Reigber Ch, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134. doi:10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  • Schumaker B (2003) Disturbance reduction requirements for LISA. Class Q Grav 20:S239–S253. doi:10.1088/0264-9381/20/10/327

    Article  Google Scholar 

  • Shaul DNA, Araújo HM, Rochester GK, Schulte M, Sumner TJ (2008) Charge management for LISA and LISA Pathfinder. Int J Mod Phys D 17:993–1003. doi:10.1142/S0218271808012656

    Article  Google Scholar 

  • Sheard BS, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86:1083–1095. doi:10.1007/s00190-012-0566-3

    Article  Google Scholar 

  • Staff of the space department of the John Hopkins University Applied Physics Lab, Staff of the guidance and control laboratory of Stanford University (1974) A satellite freed of all but gravitational forces: TRIAD I. J Spacecr Rockets 11:637–644. doi:10.2514/3.62146

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Google Scholar 

  • Touboul P, Rodrigues M, Metris G, Tatry B (2001) MICROSCOPE, testing the equivalence principle in space. Cr Acad Sci IV-Phys 2:1271–86. doi:10.1016/S1296-2147(01)01264-1

    Google Scholar 

  • Touboul P, Foulon B, Christophe B, Marque JP (2012) CHAMP, GRACE, GOCE instruments and beyond. IAG Symp 136:215–221. doi:10.1007/978-3-642-20338-1_26

  • Wang Q-L, Yeh H-C, Zhou Z-B, Luo J (2005) Improving the sensitivity of a torsion pendulum by using an optical spring method. Phys Rev A 80:043811. doi:10.1103/PhysRevA.80.043811

  • Wertz JR, Larson WJ (1999) Space mission analysis and design. Microcosm, Hawthorne

    Google Scholar 

  • Willemenot E (1997) Pendule de torsion à suspension électrostatique. Dissertation, University of Orsay

  • Zhou YL, Ma SY, Lühr H, Xiong C, Reigber C (2009) An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. Adv Space Res 43:819–828. doi:10.1016/j.asr.2008.06.016

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Guido Müller and Giacomo Ciani at the University of Florida and William Weber at the University of Trento for their valuable insights related to this work. The author would also like to thank Anh Nguyen at the University of Florida for providing the low Earth orbit disturbance force model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Conklin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conklin, J.W. Drift mode accelerometry for spaceborne gravity measurements. J Geod 89, 1053–1070 (2015). https://doi.org/10.1007/s00190-015-0833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0833-1

Keywords

Navigation