Skip to main content
Log in

Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we study the minimization problem of the infinite-horizon expected exponential utility total cost for continuous-time piecewise deterministic Markov processes with the control acting continuously on the jump intensity \(\lambda \) and on the transition measure Q of the process. The action space is supposed to depend on the state variable and the state space is considered to have a frontier such that the process jumps whenever it touches this boundary. We characterize the optimal value function as the minimal solution of an integro-differential optimality equation satisfying some boundary conditions, as well as the existence of a deterministic stationary optimal policy. These results are obtained by using the so-called policy iteration algorithm, under some continuity and compactness assumptions on the parameters of the problem, as well as some non-explosive conditions for the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Bäuerle N, Rieder U (2014) More risk-sensitive Markov decision processes. Math Oper Res 39(1):105–120

    Article  MathSciNet  Google Scholar 

  • Bäuerle N, Jaśkiewicz A (2018) Stochastic optimal growth model with risk sensitive preferences. J Econ Theory 173:181–200

    Article  MathSciNet  Google Scholar 

  • Bäuerle N, Popp A (2018) Risk-sensitive stopping problems for continuous-time Markov chains. Stochastics 90(3):411–431

    Article  MathSciNet  Google Scholar 

  • Bourbaki N (1959) Integration. I. Chapters 1–6. Elements of mathematics (Berlin). Translated from the 1959, 1965 and 1967 French originals by Sterling K. Berberian. Springer, Berlin, 2004

  • Castaing C, Valadier M (1977) Convex analysis and measurable multifunctions, vol 580. Lecture notes in mathematics. Springer, Berlin

  • Costa OLV, Dufour F (2013) Continuous average control of piecewise deterministic Markov processes. Springer briefs in mathematics. Springer, New York

    Book  Google Scholar 

  • Costa OLV, Dufour F, Piunovskiy AB (2016) Constrained and unconstrained optimal discounted control of piecewise deterministic Markov processes. SIAM J Control Optim 54(3):1444–1474

    Article  MathSciNet  Google Scholar 

  • Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Stat Soc (B) 46(3):353–388

    MATH  Google Scholar 

  • Davis MHA (1993) Markov models and optimization. Monographs on statistics and applied probability, vol 49. Chapman & Hall, London

    Book  Google Scholar 

  • Feinberg E (1982) Controlled Markov processes with arbitrary numerical criteria. Theory Probab Appl 27:486–503

    Article  MathSciNet  Google Scholar 

  • Feinberg E (1996) On measurability of value function and representation of randomized policies in Markov decision processes. In: Statistics, probability and game theory papers in honor of David Blackwell, T. et al. (eds)

  • Guo X, Zhang Y (2020) On risk-sensitive piecewise deterministic Markov decision processes. Appl Math Optim 81:685–710

    Article  MathSciNet  Google Scholar 

  • Guo X, Liu Q, Zhang Y (2019) Finite horizon risk-sensitive continuous-time Markov decision processes with unbounded transition and cost rates. 4OR 17(4):427–442

    Article  MathSciNet  Google Scholar 

  • Hernández-Lerma O, Lasserre J-B (1996) Discrete-time Markov control processes, volume 30 of applications of mathematics (New York). Springer, New York. Basic optimality criteria

  • Huang Y, Lian Z, Guo X (2020) Risk-sensitive finite-horizon piecewise deterministic Markov decision processes. Oper Res Lett 48:96–103

    Article  MathSciNet  Google Scholar 

  • Jacod J (1974/75) Multivariate point processes: predictable projection, Radon–Nikodým derivatives, representation of martingales. Z Wahrscheinlichkeitstheorie und Verw Gebiete 31:235–253

  • Jacod J (1979) Calcul stochastique et problèmes de martingales. Lecture notes in mathematics, vol 714. Springer, Berlin

    Book  Google Scholar 

  • Pal C, Pradhan S (2018) Risk sensitive control of pure jump processes on a general state space. Stochastics 91:1–20

    MathSciNet  Google Scholar 

  • Tulcea AI, Tulcea CI (1969) Topics in the theory of lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48. Springer, New York

  • Zhang Y (2017) Continuous-time Markov decision processes with exponential utility. SIAM J Control Optim 55(4):2636–2660

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. V. Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

O. L. V. Costa received financial support from CNPq (Brazilian National Research Council), Grant 304149/2019-5, FAPESP (Research Council of the State of São Paulo)/Shell through the Research Centre for Gas Innovation (RCGI), FAPESP Grant 2014/50279-4, project INCT, FAPESP/INCT Grant 2014/50851-0, CNPq/INCT Grant 465755/2014-3, and the University of São Paulo Foundation (FUSP).

Appendix

Appendix

Proof of Proposition 4.1

Clearly (30) holds for \(x^{\infty }\). For \(x\in \mathbf {X}\), the proof follows similar steps as the proof of Proposition 3.10 in Costa and Dufour (2013). Consider \(\Theta _n=\bigl (\pi _n,\gamma _{n}\bigr )\in \mathbb {V}^{r}(x)\) and \(\Theta =\bigl (\pi ,\gamma \bigr )\in \mathbb {V}^{r}(x)\) such that \(\Theta _n \rightarrow \Theta \) [see (2)], and a sequence of functions \(h_{n}\in \mathbb {M}_\infty (\mathbf {X}_{\infty })\) greater than 1, and set \(h = \mathop {\underline{\lim }}_{n\rightarrow \infty } h_{n}\). From Assumption D and E we can find a non-decreasing sequence of functions \(C^\ell (x,.)\), (\({\widetilde{C}}^\ell (z,.)\) respectively), \(\ell \in \mathbb {N}\), converging to \(C^g(x,.)\) such that \(C^\ell (x,a)\) is continuous for \(a\in \mathbf {A}(x)\) (converging to \(C^i(z,.)\) such that \({\widetilde{C}}^\ell (z,a)\) is continuous for \(a\in \mathbf {A}(z)\)). Set for \(\rho \in \mathbb {M}(\mathbf {K})\), \(\rho (x,a) \ge 0\), \(g\in \mathbb {M}_\infty (\mathbf {X})\), \(g\ge 1\), \(\ell \in \mathbb {N}\), and \(t\in [0,t^*(x)]\),

$$\begin{aligned}&P_n^\ell (g,t) = \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi _n} \big (\phi (x,r)\big )dr- \lambda _{\pi _n} \big (\phi (x,r)\big )\Big ) dr \Big ] g(\phi (x,s)\big ) ds,\\&P^\ell (g,t) = \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi } \big (\phi (x,r)\big )dr- \lambda _{\pi } \big (\phi (x,r)\big )\Big ) dr \Big ] g(\phi (x,s)\big )ds, \end{aligned}$$

and

$$\begin{aligned} T_n^\ell (\rho ,g,t)&= P_n^\ell (\rho Q_{\pi _n} g,t)\\&= \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi _n} \big (\phi (x,r)\big )dr- \lambda _{\pi _n} \big (\phi (x,r)\big )\Big ) dr \Big ]\rho Q_{\pi _n}g(\phi (x,s)\big ) ds,\\ {\widetilde{T}}_n^\ell (\rho ,g,t)&= P^\ell (\rho Q_{\pi _n} g,t)\\&= \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi } \big (\phi (x,r)\big )dr- \lambda _{\pi } \big (\phi (x,r)\big )\Big ) dr \Big ]\rho Q_{\pi _n}g(\phi (x,s)\big ) ds,\\ S_n(g)&= \exp \Big [ \int _{]0,t^{*}(x)[} C^{g}_{\pi _n} \big (\phi (x,s)\big ) ds +C^{i}_{\gamma _n}(\phi (x,t^{*}(x)))\Big ]\\&\quad \exp \Big [ - \int _{]0,t^{*}(x)[} \lambda _{\pi _n} \big (\phi (x,s)\big )ds \Big ] \\&\quad Q_{\gamma _n}g(\phi (x,t^{*}(x))\big ),\\ T^\ell (\rho ,g,t)&= P^\ell (\rho Q_{\pi } g,t)\\&= \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi } \big (\phi (x,r)\big )dr- \lambda _{\pi } \big (\phi (x,r)\big )\Big ) dr \Big ] \rho Q_{\pi }g(\phi (x,s)\big ) ds,\\ S(g)&= \exp \Big [ \int _{]0,t^{*}(x)[} C^{g}_{\pi } \big (\phi (x,s)\big )ds +C^{i}_{\gamma }(\phi (x,t^{*}(x)))\Big ]\\&\quad \exp \Big [ - \int _{]0,t^{*}(x)[} \lambda _{\pi } \big (\phi (x,s)\big )\Big )ds \Big ] \\&\quad Q_{\gamma }g(\phi (x,t^{*}(x))\big ). \end{aligned}$$

We also define the functions \(P_n(g,t)\), P(gt), \(T_n(\rho ,g,t)\), \({\widetilde{T}}_n(\rho ,g,t)\), \(T(\rho ,g,t)\), replacing \(C^\ell \) by \(C^g\). Notice that

$$\begin{aligned} T_n^\ell (\rho ,g,t) = P_n^\ell (\rho Q_{\pi _n} g,t) - P^\ell (\rho Q_{\pi _n} g,t) + {\widetilde{T}}_n^\ell (\rho ,g,t), \end{aligned}$$
(62)

and that

$$\begin{aligned}&\mathcal {T}h_{n}(\Theta _n,x) = T_n(\lambda ,h_n,t^{*}(x)) + S_n(h_n), \end{aligned}$$
(63)
$$\begin{aligned}&\mathcal {T}h(\Theta ,x) = T(\lambda ,h,t^{*}(x)) + S(h). \end{aligned}$$
(64)

Our goal will be to show that

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } {T}_n(\lambda ,h_n,t^*(x)) \ge&T(\lambda ,h,t^*(x)), \end{aligned}$$
(65)

and that

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n) \ge S(h). \end{aligned}$$
(66)

From (63), (64), (65) and (66) we get that

$$\begin{aligned}&\mathop {\underline{\lim }}_{n\rightarrow \infty }\mathcal {T}h_{n}(\Theta _n,x) \\&\quad = \mathop {\underline{\lim }}_{n\rightarrow \infty }(T_n(\lambda ,h_n,t^{*}(x)) + S_n(h_n)) \ge \mathop {\underline{\lim }}_{n\rightarrow \infty } T_n(\lambda ,h_n,t^{*}(x)) + \mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n) \\&\quad \ge T(\lambda ,h,t^{*}(x)) + S(h) = \mathcal {T}(h)(\Theta ,x) \end{aligned}$$

which will prove our result.

We will first show that (65) holds. Following the same reasoning as in the proof of item (a) of Proposition 3.10 in Costa and Dufour (2013) (page 38), and using Assumptions B, C and D we get that for any \(t\in [0,t^*(x)] \cap \mathbb {R}_+\),

$$\begin{aligned}&\lim _{n\rightarrow \infty } \int _{0}^t \lambda _{\pi _n}(\phi (x,s))ds \nonumber \\&\quad = \int _{0}^t \lambda _\pi (\phi (x,s)) ds, \,\, \lim _{n\rightarrow \infty } \int _{0}^t C_{\pi _n}^\ell (\phi (x,s)) ds= \int _{0}^t C_\pi ^\ell (\phi (x,s)) ds. \end{aligned}$$
(67)

Set for any \(s\in [0,t* (x)]\cap \mathbb {R}_+\),

$$\begin{aligned} \Psi _n^\ell (s)&=\exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi _n} \big (\phi (x,r)\big )- \lambda _{\pi _n} \big (\phi (x,r)\big )\Big ) dr \Big ] \\&\quad - \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi } \big (\phi (x,r)\big )- \lambda _{\pi } \big (\phi (x,r)\big )\Big )\Big ] dr. \end{aligned}$$

From (67) we have that

$$\begin{aligned} \lim _{n\rightarrow \infty } \Psi _n^\ell (s)= 0, \end{aligned}$$
(68)

and, moreover, from Assumption G, that for any \(s<t^{*}(x)\)

$$\begin{aligned} | \Psi _n^\ell (s) | \le 2\exp \Big [ \int _{]0,s[}\Big (\overline{C}\big (\phi (x,r)\big )dr- \underline{\lambda } \big (\phi (x,r)\big )\Big ) dr \Big ] \end{aligned}$$

and, from (29), that for any \(t<t^{*}(x)\)

$$\begin{aligned} \int _{]0,t[} \exp \Big [ \int _{]0,s[}\Big (\overline{C}\big (\phi (x,r)\big )dr- \underline{\lambda } \big (\phi (x,r)\big )\Big ) dr \Big ] ds < \infty . \end{aligned}$$

From this, (68) and the bounded convergence theorem we conclude that

$$\begin{aligned} \lim _{n\rightarrow \infty } \int _{]0,t[}| \Psi _n^\ell (s) | ds = \int _{]0,t[} \lim _{n\rightarrow \infty } | \Psi _n^\ell (s) | ds = 0. \end{aligned}$$
(69)

Define \({\underline{h}}_k = \inf _{j\ge k} h_j\) so that \({\underline{h}}_k\le h_n\) for \(n\ge k\), and \({\underline{h}}_k \uparrow h\). Set \(\lambda ^m(y,a) = \lambda (y,a)\wedge m\), \({\underline{h}}_k^m(y,a) ={\underline{h}}_k(y,a)\wedge m\). We have from (62) that

$$\begin{aligned} T_n^\ell (\lambda ^m,{\underline{h}}_k^m,t) = P_n^\ell (\lambda ^m Q_{\pi _n} {\underline{h}}_k^m,t) - P^\ell (\lambda ^m Q_{\pi _n} {\underline{h}}_k^m,t) + {\widetilde{T}}_n^\ell (\lambda ^m,{\underline{h}}_k^m,t). \end{aligned}$$
(70)

Since \(0\le \lambda ^m Q_{\pi _n} {\underline{h}}_k^m (\phi (x,s)) \le m^2\) we get from (69) that

$$\begin{aligned}&\lim _{n\rightarrow \infty } |P_n^\ell (\lambda ^m Q_{\pi _n} {\underline{h}}_k^m,t) - P^\ell (\lambda ^m Q_{\pi _n} {\underline{h}}_k^m,t)|\nonumber \\&\quad = \lim _{n\rightarrow \infty }\Big | \int _{]0,t[} \Psi _n^\ell (s) \lambda ^m Q_{\pi _n} {\underline{h}}_k^m(\phi (x,s)\big ) ds \Big | \nonumber \\&\quad \le \lim _{n\rightarrow \infty }\int _{]0,t[} | \Psi _n^\ell (s) | ds \,m^2 = 0. \end{aligned}$$
(71)

From Assumptions C and F we have that for each m, \(\lambda _m Q {\underline{h}}_k^m \in \mathbb {B}(\mathbf {K})\), it is positive, and for any \(y\in E\), \(\lambda _m Q {\underline{h}}_k^m (y,.)\) is continuous on \(\mathbf {A}(y)\). Therefore, from the fact that \(\Theta _n \rightarrow \Theta \), we get that [see (2)]

$$\begin{aligned}&\lim _{n\rightarrow \infty } {\widetilde{T}}_n^\ell (\lambda ^m,{\underline{h}}_k^m,t)\nonumber \\&\quad = \lim _{n\rightarrow \infty } \int _{]0,t[} \int _{\mathbf {A}(\phi (x,t))} \exp \Big [ \int _{]0,s[}\Big (C^{\ell }_{\pi } \big (\phi (x,r)\big )dr- \lambda _{\pi } \big (\phi (x,r)\big )\Big ) dr \Big ] \nonumber \\&\times \Big [ \lambda ^m(\phi (x,s),a) Q{\underline{h}}_k^m (\phi (x,s),a)\Big ]\pi _{n}(da|\phi (x,s)) ds \nonumber \\&\quad = \int _{]0,t[} \int _{\mathbf {A}(\phi (x,t))} \exp \Big [ \int _{]0,s[}\Big (C^{g}_{\pi } \big (\phi (x,r)\big )dr- \lambda _{\pi } \big (\phi (x,r)\big )\Big ) dr \Big ] \nonumber \\&\qquad \times \Big [ \lambda ^m(\phi (x,s),a) Q{\underline{h}}_k^m(\phi (x,s),a)\Big ]\pi (da|\phi (x,s)) ds = T(\lambda ^m,{\underline{h}}_k^m,t), \end{aligned}$$
(72)

so that from (70), (71), (72), we have that

$$\begin{aligned} \lim _{n\rightarrow \infty } T_n^\ell (\lambda ^m,{\underline{h}}_k^m,t) = \lim _{n\rightarrow \infty } {\widetilde{T}}_n^\ell (\lambda ^m,{\underline{h}}_k^m,t)=&T^\ell (\lambda ^m,{\underline{h}}_k^m,t). \end{aligned}$$
(73)

Since \(C^g \ge C^\ell \) for \(\ell \in \mathbb {N}\), \(h_n \ge {\underline{h}}_k \ge {\underline{h}}_k^m\) for \(n\ge k\), \(\lambda \ge \lambda ^m\), we get from (73) that

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } {T}_n(\lambda ,h_n,t) \ge \lim _{n\rightarrow \infty } T_n^\ell (\lambda ^m,{\underline{h}}_k^m,t) \ge T^\ell (\lambda ^m,{\underline{h}}_k^m,t). \end{aligned}$$
(74)

From the monotone convergence theorem and taking the limit over \(\ell \), m and k we get from (74) that

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } T_n(\lambda ,h_n,t) \ge&T(\lambda ,h,t). \end{aligned}$$
(75)

Since \(\lambda \) and \(h_n\), h are positive, we have that \(T_n(\lambda ,h_n,t^*(x)) \ge T_n(\lambda ,h_n,t)\), so that from (75),

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } {T}_n(\lambda ,h_n,t^*(x))\ge \mathop {\underline{\lim }}_{n\rightarrow \infty } {T}_n(\lambda ,h_n,t) \ge&T(\lambda ,h,t). \end{aligned}$$
(76)

Taking the limit as \(t \rightarrow t^*(x)\) we conclude from (76) that (65) holds.

Let us show now that (66) holds. We consider two cases, the first one is for \(t^*(x)=\infty \), and the second one is for \(t^*(x)<\infty \). For the case \(t^*(x)=\infty \) we recall first that \(Q_{\gamma _n}h_n(\phi (x,\infty )) = Q_{\gamma _n}h_n(x^{\infty })=1\), \(Q_{\gamma }h(\phi (x,\infty )) = Q_{\gamma }h(x^{\infty })=1\), and that \(C^i_{\gamma _n}(\phi (x,\infty )) = C^i_{\gamma _n}(x^{\infty })=0\), \(C^i_{\gamma }(\phi (x,\infty )) = C^i_{\gamma }(x^{\infty })=0\). Suppose that \(\int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr=\infty \). In this case, we have that \(S(h) = 0\) recalling that, by convention, \(0 \times \infty =0\). Therefore, \(\mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n) \ge S(h)\).

For the case \(\int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr<\infty \) we have that \(\int _{]0,\infty [} \underline{\lambda }(\phi (x,s))ds \le \int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr < \infty \) and from Assumption G, \(\int _{]0,\infty [} \overline{\lambda }(\phi (x,s))ds < \infty \). Thus \(\lambda (\phi (x,.),.)\in L^{1}(\mathbb {R}_{+};\mathbb {C}(\mathbf {A}))\) and from (2) we have that \(\lim _{n\rightarrow \infty } \int _{]0,\infty [}\lambda _{\pi _n} \big (\phi (x,r)\big ) dr = \int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr\). Therefore,

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n)&\ge \lim _{n\rightarrow \infty }\Big \{\exp \Big [ - \int _{]0,\infty [}\lambda _{\pi _n} \big (\phi (x,r)\big ) dr \Big ] \exp \Big [ \int _{]0,t[}C_{\pi _n}^\ell \big (\phi (x,r)\big ) dr \Big ]\Big \}\\&= \exp \Big [ - \int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr \Big ] \exp \Big [ \int _{]0,t[}C_{\pi }^\ell \big (\phi (x,r)\big ) dr \Big ] . \end{aligned}$$

Taking the limit as \(\ell \rightarrow \infty \) and monotone convergence theorem we get that

$$\begin{aligned} \mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n)&\ge \exp \Big [ - \int _{]0,\infty [}\lambda _{\pi } \big (\phi (x,r)\big ) dr \Big ] \exp \Big [ \int _{]0,t[}C_{\pi } \big (\phi (x,r)\big ) dr \Big ] \end{aligned}$$

and by taking the limit as \(t\rightarrow \infty \) we conclude that \(\mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n) \ge S(h)\). Consider now the case \(t^*(x)<\infty \). From Assumption E we get that

$$\begin{aligned} \lim _{n\rightarrow \infty } \exp \Big [ {\widetilde{C}}^{\ell }_{\gamma _n}(\phi (x,t^{*}(x))) \Big ] = \exp \Big [ {\widetilde{C}}^{\ell }_{\gamma }(\phi (x,t^{*}(x))) \Big ]. \end{aligned}$$
(77)

Defining again \({\underline{h}}_k = \inf _{j\ge k} h_j\), \({\underline{h}}_k^m = {\underline{h}}_k \wedge m\), and repeating similar arguments as above we get that

$$\begin{aligned}&\mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n)\\&\quad \ge \lim _{n\rightarrow \infty } \exp \Big [ \int _{]0,t^{*}(x)[} \Big ( C^{\ell }_{\pi _n} \big (\phi (x,s)\big )-\lambda _{\pi _n} \big (\phi (x,s)\big )\Big )ds\\&\qquad +{\widetilde{C}}^{\ell }_{\gamma _n}(\phi (x,t^{*}(x))) \Big ] Q_{\gamma _n} {\underline{h}}_k^m (\phi (x,t^{*}(x)))\\&\quad = \exp \Big [ \int _{]0,t^{*}(x)[} \Big ( C^{\ell }_{\pi } \big (\phi (x,s)\big )-\lambda _{\pi } \big (\phi (x,s)\big )\Big )ds\\&\qquad +{\widetilde{C}}^{\ell }_{\gamma }(\phi (x,t^{*}(x))) \Big ] Q_{\gamma }{\underline{h}}_k^m (\phi (x,t^{*}(x))). \end{aligned}$$

Taking the limit as \(\ell \), m, k goes to \(\infty \) and from the monotone convergence theorem we get that \(\mathop {\underline{\lim }}_{n\rightarrow \infty } S_n(h_n) \ge S(h)\) and thus we conclude that (66) hods. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, O.L.V., Dufour, F. Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes. Math Meth Oper Res 93, 327–357 (2021). https://doi.org/10.1007/s00186-020-00732-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-020-00732-8

Keywords

Mathematics Subject Classification

Navigation