Skip to main content
Log in

A generalized approximation framework for fractional network flow and packing problems

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We generalize the fractional packing framework of Garg and Koenemann (SIAM J Comput 37(2):630–652, 2007) to the case of linear fractional packing problems over polyhedral cones. More precisely, we provide approximation algorithms for problems of the form \(\max \{c^T x : Ax \le b, x \in C \}\), where the matrix A contains no negative entries and C is a cone that is generated by a finite set S of non-negative vectors. While the cone is allowed to require an exponential-sized representation, we assume that we can access it via one of three types of oracles. For each of these oracles, we present positive results for the approximability of the packing problem. In contrast to other frameworks, the presented one allows the use of arbitrary linear objective functions and can be applied to a large class of packing problems without much effort. In particular, our framework instantly allows to derive fast and simple fully polynomial-time approximation algorithms (FPTASs) for a large set of network flow problems, such as budget-constrained versions of traditional network flows, multicommodity flows, or generalized flows. Some of these FPTASs represent the first ones of their kind, while others match existing results but offer a much simpler proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We use the notation \(B_{l\cdot }\) for a matrix B to denote the l-th row of the matrix.

  2. We will see how we can “filter out” vectors \(x^{(l)}\) with negative costs in the following sections.

  3. The sign function \({{\mathrm{sgn}}}:\mathbb {R} \mapsto \{-1,0,1\}\) returns \(-1\), 0, or 1 depending on whether the argument is negative, zero, or positive, respectively.

  4. Actually, since we do not have direct access to the set S, we need to obtain such a vector via an oracle access. However, by calling the oracle once more with a very large value for \(\lambda \) or by returning some vector found before, we obtain a certificate in S, which we can return.

  5. M denotes the largest absolute value of each number given in the problem instance, assuming gain factor are given as ratios of integers.

References

  • Ahuja RK, Orlin JB (1995) A capacity scaling algorithm for the constrained maximum flow problem. Networks 25(2):89–98

    Article  MATH  Google Scholar 

  • Bienstock D (2006) Potential function methods for approximately solving linear programming problems: theory and practice, vol 53. Springer, New York

    MATH  Google Scholar 

  • Bienstock D, Iyengar G (2006) Approximating fractional packings and coverings in o (1/epsilon) iterations. SIAM J Comput 35(4):825–854

    Article  MathSciNet  MATH  Google Scholar 

  • Çalışkan C (2008) A double scaling algorithm for the constrained maximum flow problem. Comput Oper Res 35(4):1138–1150

    Article  MathSciNet  MATH  Google Scholar 

  • Çalışkan C (2009) On a capacity scaling algorithm for the constrained maximum flow problem. Networks 53(3):229–230

    Article  MathSciNet  MATH  Google Scholar 

  • Çalışkan C (2012) A faster polynomial algorithm for the constrained maximum flow problem. Comput Oper Res 39(11):2634–2641

    Article  MathSciNet  MATH  Google Scholar 

  • Chazelle B (2000) A minimum spanning tree algorithm with inverse-ackermann type complexity. JACM 47(6):1028–1047

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen E, Megiddo N (1990) Maximizing concave functions in fixed dimension. World Scientific, Singapore

    MATH  Google Scholar 

  • Cohen E, Megiddo N (1994) Improved algorithms for linear inequalities with two variables per inequality. SIAM J Comput 23(6):1313–1347

    Article  MathSciNet  MATH  Google Scholar 

  • Cole R (1987) Slowing down sorting networks to obtain faster sorting algorithms. JACM 34(1):200–208

    Article  MathSciNet  Google Scholar 

  • Cunningham WH (1984) Testing membership in matroid polyhedra. J Comb Theory B 36(2):161–188

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Fleischer LK (2000) Approximating fractional multicommodity flow independent of the number of commodities. SIAM J Discrete Math 13(4):505–520

    Article  MathSciNet  MATH  Google Scholar 

  • Fleischer LK, Wayne KD (2002) Fast and simple approximation schemes for generalized flow. Math Program 91(2):215–238

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow HN, Manu KS (1998) Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Math Program 82(1–2):83–109

    MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability—a guide to the theory of \({\cal{N}}{\cal{P}}\)-completeness. W. H. Freeman and Company, New York

    Google Scholar 

  • Garg N, Koenemann J (2007) Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM J Comput 37(2):630–652

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoriadis MD, Khachiyan LG (1994) Fast approximation schemes for convex programs with many blocks and coupling constraints. SIAM J Optim 4(1):86–107

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoriadis MD, Khachiyan LG (1996) Coordination complexity of parallel price-directive decomposition. Math Oper Res 21(2):321–340

    Article  MathSciNet  MATH  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1993) Geometric algorithms and combinatorial optimization, volume 2 of algorithms and combinatorics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hassin R (1992) Approximation schemes for the restricted shortest path problem. Math Oper Res 17(1):36–42

    Article  MathSciNet  MATH  Google Scholar 

  • Holzhauser M, Krumke SO, Thielen C (2016) Budget-constrained minimum cost flows. J Comb Optim 31(4):1720–1745

  • Holzhauser M, Krumke SO, Thielen C (2017a) On the complexity and approximability of budget-constrained minimum cost flows. Inf Process Lett 126: 24–29. doi:10.1016/j.ipl.2017.06.003

  • Holzhauser M, Krumke SO, Thielen C (2017b) Maximum flows in generalized processing networks. J Comb Optim 33(4): 1226–1256. doi:10.1007/s10878-016-0031-y

  • Karakostas G (2008) Faster approximation schemes for fractional multicommodity flow problems. ACM Trans Algorithms (TALG) 4(1):13

    MathSciNet  Google Scholar 

  • Karp RM (1978) A characterization of the minimum cycle mean in a digraph. Discrete Math 23(3):309–311

    Article  MathSciNet  MATH  Google Scholar 

  • Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lawler EL (2001) Combinatorial optimization: networks and matroids. Courier Corporation, New York

    MATH  Google Scholar 

  • Megiddo N (1979) Combinatorial optimization with rational objective functions. Math Oper Res 4(4):414–424

    Article  MathSciNet  MATH  Google Scholar 

  • Megiddo N (1983) Applying parallel computation algorithms in the design of serial algorithms. JACM 30(4):852–865

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham JD (2001) Combinatorial approximation algorithms for generalized flow problems. J Algorithms 38(1):135–169

    Article  MathSciNet  MATH  Google Scholar 

  • Plotkin SA, Shmoys DB, Tardos É (1995) Fast approximation algorithms for fractional packing and covering problems. Math Oper Res 20(2):257–301

    Article  MathSciNet  MATH  Google Scholar 

  • Schrijver A (2002) Combinatorial optimization: polyhedra and efficiency, vol 24. Springer, New York

    MATH  Google Scholar 

  • Toledo S (1992) Maximizing non-linear concave functions in fixed dimension. In: Proceedings 33rd annual symposium on foundations of computer science, 1992. pp 676–685

  • Toledo S (1993) Approximate parametric searching. Inf Process Lett 47(1):1–4

    Article  MathSciNet  MATH  Google Scholar 

  • Wayne KD (1999) Generalized maximum flow algorithms. PhD thesis, Cornell University

  • Wayne KD (2002) A polynomial combinatorial algorithm for generalized minimum cost flow. Math Oper Res 27(3):445–459

    Article  MathSciNet  MATH  Google Scholar 

  • Young NE (1995) Randomized rounding without solving the linear program. SODA 95:170–178

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Holzhauser.

Additional information

This work was partially supported by the German Federal Ministry of Education and Research within the project “SinOptiKom—Cross-sectoral Optimization of Transformation Processes in Municipal Infrastructures in Rural Areas”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzhauser, M., Krumke, S.O. A generalized approximation framework for fractional network flow and packing problems. Math Meth Oper Res 87, 19–50 (2018). https://doi.org/10.1007/s00186-017-0604-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0604-2

Keywords

Navigation