Skip to main content
Log in

Performance analysis of a reflected fluid production/inventory model

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We study the performance of a reflected fluid production/inventory model operating in a stochastic environment that is modulated by a finite state continuous time Markov chain. The process alternates between ON and OFF periods. The ON period is switched to OFF when the content level reaches a predetermined level q and returns to ON when it drops to 0. The ON/OFF periods generate an alternative renewal process. Applying a matrix analytic approach, fluid flow techniques and martingales, we develop methods to obtain explicit formulas for the cost functionals (setup, holding, production and lost demand costs) in the discounted case and under the long-run average criterion. Numerical examples present the trade-off between the holding cost and the loss cost and show that the total cost appears to be a convex function of q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn S, Badescu AL, Ramaswami V (2007) Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier. Queueing Syst 55:207–222

    Article  MathSciNet  MATH  Google Scholar 

  • Asmussen S (2003) Applied probability and queues, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Asmussen S, Kella O (2000) A multi-dimensional martingale for Markov additive process and its applications. Adv Appl Probab 32:376–393

    Article  MathSciNet  MATH  Google Scholar 

  • Barron Y (2015) A fluid EOQ model with Markovian environment. J Appl Probab 52:473–489

    Article  MathSciNet  Google Scholar 

  • Barron Y, Perry D, Stadje W (2014) A make-to-stock production/inventory model with MAP arrivals and phase-type demands. Ann Oper Res 1–37

  • Beltran JL, Krass D (2002) Dynamic lot sizing with returning items and disposals. IIE Trans 34:437–448

    Google Scholar 

  • Berman O, Perry D (2001) Two control policies for stochastic EOQ-type models. Probab Eng Inf Sci 15:445–463

    MathSciNet  MATH  Google Scholar 

  • Berman O, Perry D, Stadje W (2007) Performance analysis of a fluid production/inventory model with state-dependence. Methodol Comput Appl Probab 9:465–481

    Article  MathSciNet  MATH  Google Scholar 

  • Boxma O, Kaspi H, Kella O, Perry D (2005) On/off storage systems with state-dependent input, output, and switching rates. Probab Eng Inf Sci 19:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Boxma OJ, Kella O, Perry D (2001) An intermittent fluid system with exponential on-times and semi-Markov input rates. Probab Eng Inf Sci 15:189–198

    Article  MathSciNet  MATH  Google Scholar 

  • Boxma O, Perry D, Stadje W, Zacks S (2015) A compound Poisson EOQ model for perishable items with intermittent high and low demand periods. Working paper (in press)

  • Boxma O, Perry D, Zacks S (2014) A fluid EOQ model of perishable items with intermittent high and low demand rates. Math Oper Res 40:390–402

  • Da Silva Soares A, Latouche G (2005) Matrix-analytic methods for fluid queues with feedback control. Int J Simul Syst Sci Technol 6:4–12

    Google Scholar 

  • De Kok AG, Tijms HC, Van Der Duyn Schouten FA (1984) Approximations for the single product production–inventory problem with compound Poisson demand and service level constraints. Adv Appl Probab 16:378–401

    Article  MATH  Google Scholar 

  • Fleischmann M, Kuik R, Dekker R (2002) Controlling inventories with stochastic item returns: a basic model. Eur J Oper Res 138:63–75

    Article  MathSciNet  MATH  Google Scholar 

  • Germs R, Foreest NDV (2014) Optimal control of production–inventory systems with constant and compound Poisson demand. University of Groningen, Groningen

    Google Scholar 

  • Grunow M, Günter HO, Westinner R (2007) Supply optimization for the production of raw sugar. Int J Prod Econ 110:224–239

    Article  Google Scholar 

  • Kella O, Perry D, Stadje W (2003) A stochastic clearing model with Brownian and a compound Poisson component. Probab Eng Inf Sci 17:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Kella O, Whitt W (1992) A Storage model with a two-stage random environment. Oper Res 40:s257–s262

    Article  MATH  Google Scholar 

  • Kulkarni VG, Yan K (2007) A fluid model with upward jumps at the boundary. Queueing Syst 56:103–117

    Article  MathSciNet  MATH  Google Scholar 

  • Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods is stochastic modeling, vol 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  • Mohebbi E (2006) A production–inventory model with randomly changing environmental conditions. Eur J Oper Res 174:539–552

    Article  MATH  Google Scholar 

  • Perry D, Posner MJ (2002) A mountain process with state dependent input and output and a correlated dam. Oper Res Lett 30:245–251

    Article  MathSciNet  MATH  Google Scholar 

  • Pinçe Ç, Gürler Ü, Berk E (2008) A continuous review replenishment–disposal policy for an inventory system with autonomous supply and fixed disposal costs. Eur J Oper Res 190:421–442

    Article  MATH  Google Scholar 

  • Ramaswami V (1999) Matrix analytic methods for stochastic fluid flows. In: Proceedings of the international teletraffic congress (ITC-16). Edinburgh, Elsevier

  • Ramaswami V (2006) Passage times in fluid models with application to risk processes. Methodol Comput Appl Probab 8:497–515

    Article  MathSciNet  MATH  Google Scholar 

  • Shaharudin MR, Zailani S, Tan KC (2015) Barriers to product returns and recovery management in a developing country: investigation using multiple methods. J Clean Prod 96:220–232

    Article  Google Scholar 

  • Shen Y, Willems SP (2014) Modeling sourcing strategies to mitigate part obsolescence. Eur J Oper Res 246:522–533

    Article  MathSciNet  Google Scholar 

  • Shi J, Katehakis MN, Melamed B (2013) Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Ann Oper Res 208:593–612

    Article  MathSciNet  MATH  Google Scholar 

  • Shi J, Katehakis MN, Melamed B, Xia Y (2014) Production-inventory systems with lost-sales and compound Poisson demands. Oper Res 62:1048–1063

    Article  MathSciNet  Google Scholar 

  • Song Y, Lau HC (2004) A periodic-review inventory model with application to the continuous-review obsolescence problem. Eur J Oper Res 159:110–120

    Article  MathSciNet  MATH  Google Scholar 

  • Song JS, Zipkin P (1993) Inventory control in a fluctuating demand environment. Oper Res 41:351–370

    Article  MATH  Google Scholar 

  • Taft EA (1918) The most economical production lot. Iron Age 101(18):1410–1412

    Google Scholar 

  • Taylor HM (1968) Some models in epidemic control. Math Biosci 3:383–398

    Article  Google Scholar 

  • Tyler R (2004) Industry confronts equipment crunch. The Daily Telegraph (London) May 6

  • Vickson RG (1986) A single product cycling problem under Brownian motion demand. Manag Sci 32:1336–1345

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Chao X (2013) Optimal control of a Brownian production/inventory system with average cost criterion. Math Oper Res 39:163–189

    Article  MathSciNet  Google Scholar 

  • Zhang B, Zwart B (2012) Fluid models for many-server Markovian queues in a changing environment. Oper Res Lett 40:573–577

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonit Barron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

In this “Appendix” we introduce the algorithm developed in Ramaswami (2006) for the computation of the matrix \(\Psi (\beta )\) associated with the MMFF process \((\mathcal {F}(t),\mathcal {J}(t),t\ge 0)\), as described in Sect. 3.2. Let \(\sigma (x)=\inf \{t>0,\mathcal {F}(t)=x\}\) be the first passage time to level x and define the following LST

$$\begin{aligned}{}[\Psi (\beta )] _{ij}=E\left( e^{-\beta \sigma (0)},\mathcal {J} (\sigma (0))=j\mid \mathcal {F}(0)=0,\mathcal {J}(0)=i\right) \quad i\in S_{1},\quad j\in S_{2}. \end{aligned}$$
(58)

\([\Psi (\beta )] _{ij}\) represents the LST of \(\sigma (0)\) restricted to the event that the fluid process hits level 0 at state \(j\in S_{2},\) given \(\mathcal {F}(0)=0\) and \(J(0)=i\in S_{1}.\) Ramaswami (2006, Appendix 1, p. 512) shows how to compute the matrix \(\Psi (\beta )\) and provides a good algorithm for this. The algorithm for \(\Psi (\mathfrak {\beta })\) is given as follows.

For \(\lambda >0,\) let

$$\begin{aligned} P_{\lambda }=\frac{1}{\lambda }U^{-1}Q+I \end{aligned}$$

where U and Q define in Sect. 3.2. Choose (fixed) positive numbers \(\lambda \) and \(\delta \) such that

$$\begin{aligned}&\lambda \ge \max _{i\in s}\left\{ -[U^{-1}Q]_{ii}\right\} \\&\max _{i\in S}\left[ \frac{{\text {Re}}(\mathfrak {\beta })}{\lambda } U^{-1}\right] _{ii}\le \delta <1,\quad \hbox {and}\\&\max _{i\in S}\left[ P_{\lambda }-\frac{{\text {Re}}(\mathfrak {\beta } )}{\lambda }U^{-1}\right] _{ii}>0 \end{aligned}$$

Define the matrices

$$\begin{aligned} A_{2}(\mathfrak {\beta },\lambda )= & {} \left( \begin{array} [c]{cc} 0 &{}\quad 0\\ 0 &{}\quad \lambda U_{2}\left( \mathfrak {\beta }I+2\lambda U_{2}\right) ^{-1} \end{array} \right) \\ A_{1}(\mathfrak {\beta },\lambda )= & {} \Lambda U(\mathfrak {\beta }I+\Lambda U)^{-1}\left( \begin{array} [c]{cc} 0 &{}\quad 0\\ \frac{1}{2}P_{21} &{}\quad \frac{1}{2}P_{22} \end{array} \right) \\ A_{0}(\mathfrak {\beta },\lambda )= & {} \left( \begin{array} [c]{cc} P_{11}-\frac{\beta }{\lambda }U_{1}^{-1} &{}\quad P_{12}\\ 0 &{}\quad 0 \end{array} \right) \end{aligned}$$

where \(\Lambda =diag(\lambda I_{\vert S_{1}\vert },2\lambda I_{\vert S_{2}\vert })\) and \(P=P_{\lambda }.\) Consider now the following algorithm.

1.1 Algorithm

Fix \(\epsilon >0\) and set \(diff=100\);

$$\begin{aligned}&H^{**}(1,\mathfrak {\beta },\lambda )=\left( I-A_{1}(\mathfrak {\beta } ,\lambda )\right) ^{-1}A_{0}(\mathfrak {\beta },\lambda );\\&L^{**}(1,\mathfrak {\beta },\lambda )=\left( I-A_{1}(\mathfrak {\beta } ,\lambda )\right) ^{-1}A_{2}(\mathfrak {\beta },\lambda );\\&G^{**}(1,\mathfrak {\beta },\lambda )=L^{**}(1,\mathfrak {\beta },\lambda );\\&T(1)=H^{**}(1,\mathfrak {\beta },\lambda );\\&Dowhile (diff>\epsilon )\\&\begin{array} [c]{cl} &{} k=k+1;\\ &{} U^{**}(k,\mathfrak {\beta },\lambda )=H^{**}(k-1,\mathfrak {\beta },\lambda )L^{**}(k-1,\mathfrak {\beta },\lambda )\\ &{} \quad \quad \quad \quad \quad \quad \qquad +\,L^{**}(k-1,\mathfrak {\beta },\lambda )H^{**}(k-1,\mathfrak {\beta },\lambda );\\ &{} M=(H^{**}(k-1,\mathfrak {\beta },\lambda ))^{2};\\ &{} H^{**}(k,\mathfrak {\beta },\lambda )=(I-U^{**}(k,\mathfrak {\beta },\lambda ))^{-1}M;\\ &{} M=(L^{**}(k-1,\mathfrak {\beta },\lambda ))^{2};\\ &{} L^{**}(k,\mathfrak {\beta },\lambda )=(I-U^{**}(k,\mathfrak {\beta },\lambda ))^{-1}M;\\ &{} G^{**}(k,\mathfrak {\beta },\lambda )=G^{**}(k-1,\mathfrak {\beta },\lambda )+T(k-1)L^{**}(k,\mathfrak {\beta },\lambda );\\ &{} T(k)=T(k-1)H^{**}(k,\mathfrak {\beta },\lambda );\\ &{} diff=\mathop {max}\limits _{j,k\in S}\left\{ [G^{**}(k,\mathfrak {\beta },\lambda )]_{j,k}-[G^{**}(k-1,\mathfrak {\beta },\lambda )]_{j,k}\right\} ; \end{array} \\&end\\&\Psi (\mathfrak {\beta })\cong G_{12}^{**}(k,\mathfrak {\beta } ,\lambda )G_{22}^{**}(k,\mathfrak {\beta },\lambda )^{-1}. \end{aligned}$$
Table 3 Transform matrices
Table 4 LST of first-passage times

Once we have computed \(\Psi (\beta )\), the LST matrix of other hitting times are straightforward to evaluate; we list these matrices and their sizes in Tables 3 and 4. All matrices have nice probabilistic interpretations. For more details see Ahn et al. (2007).

The following LSTs of first-passage times are needed in our analysis:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, Y. Performance analysis of a reflected fluid production/inventory model. Math Meth Oper Res 83, 1–31 (2016). https://doi.org/10.1007/s00186-015-0517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-015-0517-x

Keywords

Navigation