Skip to main content
Log in

Penalized Lq-likelihood estimator and its influence function in generalized linear models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Consider the following generalized linear model (GLM)

$$\begin{aligned} y_i=h(x_i^T\beta )+e_i,\quad i=1,2,\ldots ,n, \end{aligned}$$

where h(.) is a continuous differentiable function, \(\{e_i\}\) are independent identically distributed (i.i.d.) random variables with zero mean and known variance \(\sigma ^2\). Based on the penalized Lq-likelihood method of linear regression models, we apply the method to the GLM, and also investigate Oracle properties of the penalized Lq-likelihood estimator (PLqE). In order to show the robustness of the PLqE, we discuss influence function of the PLqE. Simulation results support the validity of our approach. Furthermore, it is shown that the PLqE is robust, while the penalized maximum likelihood estimator is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araveeporn A (2021) The higher-order of adaptive lasso and elastic net methods for classification on high dimensional data. Mathematics 9:1091

    Article  Google Scholar 

  • Cao X, Lee K (2020) Variable selection using nonlocal priors in high-dimensional generalized linear models with application to FMRI data analysis. Entropy 22:807

    Article  MathSciNet  Google Scholar 

  • Chang J, Tang C, Wu Y (2013) Marginal empirical likelihood and sure independence feature screening. Ann Stat 41:2123–2148

    Article  MathSciNet  Google Scholar 

  • Chu T, Zhu J, Wang H (2011) Penalized maximum likelihood estimation and variable selection in geostatistics. Ann Stat 39(5):2607–2625

    Article  MathSciNet  Google Scholar 

  • Cox DD, O’Sullivan F (1996) Penalized likelihood-type estimators for generalized nonparametric regression. J Multivariate Anal 56(2):185–206

  • Fan J (1997) Comments on wavelets in statistics: a review by A. Antoniadis. J Ital Stat Assoc 6:131–138

    Article  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J R Stat Soc B 70:849–911

    Article  MathSciNet  Google Scholar 

  • Fan J, Song R (2010) Sure independent screening in generalized linear models with NP-dimensionality. Ann Stat 38:3567–3604

    Article  Google Scholar 

  • Ferrari D, Yang Y (2010) Maximum Lq-likelihood estimation. Ann Stat 38:753–783

    Article  Google Scholar 

  • Gao Q, Zhu C, Du X et al (2021) The asymptotic properties of Scad penalized generalized linear models with adaptive designs. J Syst Sci Complex 34(2):759–773

    Article  MathSciNet  Google Scholar 

  • Giuzio M, Ferrari D, Paterlini S (2016) Sparse and robust normal and t-portfolios by penalized Lq-likelihood minimization. Eur J Oper Res 250:251–261

    Article  MathSciNet  Google Scholar 

  • Goeman J, Van Houwelingen H, Finos L (2011) Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika 98:381–390

    Article  MathSciNet  Google Scholar 

  • Guo B, Chen S (2016) Tests for high dimensional generalized linear models. J R Stat Soc B 78:1079–1102

    Article  MathSciNet  Google Scholar 

  • Hu H, Zeng Z (2021) Penalized Lq-likelihood estimators and variable selection in linear regression. Commun Stat Theory Methods 51(17):5957–5970

    Article  MathSciNet  Google Scholar 

  • Huang H, Gao Y, Zhang H, Li B (2021) Weighted lasso estimates for sparse logistic regression: non-asymptotic properties with measurement errors. Acta Math Sci 41B(1):207–230

    Article  MathSciNet  Google Scholar 

  • Kakhki F, Freeman S, Mosher G (2018) Analyzing large workers’ compensation claims using generalized linear models and Monte Carlo simulation. Safety 4:57

    Article  Google Scholar 

  • Kwon S, Kim Y (2012) Large sample properties of the scad-penalized maximum likelihood estimation on high dimensions. Stat Sin 22(2):629–653

    Article  MathSciNet  Google Scholar 

  • Liu R, Zhao S, Hu T, Sun J (2022) Variable selection for generalized linear models with interval-censored failure time data. Mathematics 10:763

    Article  Google Scholar 

  • Öllerer V (2015) Robust and sparse estimation in high-dimensions. Ku Leuven, Leuven

    Google Scholar 

  • van de Geer SA (2008) High-dimensional generalized linear models and the lasso. Ann Stat 36:614–645

    MathSciNet  Google Scholar 

  • Wang M, Tian G (2019) Adaptive group Lasso for high-dimensional generalized linear models. Stat Pap 60:1469–1486

    Article  MathSciNet  Google Scholar 

  • Wang M, Wang X (2014) Adaptive lasso estimators for ultrahigh dimensional generalized linear models. Stat Probab Lett 89:41–50

  • Wang L, You Y, Lian H (2015) Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models. Stat Pap 56(3):819–828

    Article  MathSciNet  Google Scholar 

  • Wang M, Song L, Wang X (2010) Bridge estimation for generalized linear models with a diverging number of parameters. Stat Probab Lett 80(21):1584–1596

    Article  MathSciNet  Google Scholar 

  • Xia X (2003) Simultaneous diagonalization two matrices. J Nanchang Inst Aeronaut Technol (Nat Sci Ed) 17(03):26–32

    Google Scholar 

  • Yin Z (2020) Variable selection for sparse logistic regression. Metrika 83:821–836

    Article  MathSciNet  Google Scholar 

  • Zou H (2006) The adaptive LASSO and its oracle properties. J Am Stat Assoc 101:1418–1429

Download references

Acknowledgements

We thank the Editor and the anonymous referees for carefully reading the article and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

7. Appendix: Proofs of Lemmas and Theorems

7. Appendix: Proofs of Lemmas and Theorems

In this section, we provide some proofs of technical lemmas and Theorem 3.1.

Proof of Lemma 3.1

We only prove that for any given \(\varepsilon >0\), there exists a large constant C such that

$$\begin{aligned} P\left\{ \sup _{\Vert u\Vert =C}Q(\beta _0+\alpha _nu)<Q(\beta _0)\right\} \ge 1-\varepsilon . \end{aligned}$$
(7.1)

The case of \(q_n=1\), the proof of (7.1) is similar to Theorem 2.1 of Wang and Tian (2019) or Wang and Wang (2014). In the following, we only consider the case of \(q_n\ne 1\). Note that \(p_{\lambda _n}(\cdot )\ge 0\) and \(p_{\lambda _n}(0)=0\), and by Taylor expansion, we have

$$\begin{aligned} \begin{array}{lll} D_n(u)&{}=&{}Q(\beta _0+\alpha _nu)-Q(\beta _0)\\ &{}=&{}\sum \limits _{i=1}^n\left( L_{q_n}f(y_i-h(x_i^T(\beta _0+\alpha _nu)))-L_{q_n}f(y_i-h(x_i^T\beta _0)))\right) \\ &{}&{}-n\sum \limits _{j=1}^d\left( p_{\lambda _n}(\beta _{j0}+\alpha _nu_j)-p_{\lambda _n}(\beta _{j0})\right) \\ &{}\le &{}\frac{1}{1-q_n}\sum \limits _{i=1}^n\left( f^{1-q_n}(y_i-h(x_i^T(\beta _0+\alpha _nu)))-f^{1-q_n}(y_i-h(x_i^T\beta _0)))\right) \\ &{}&{}-n\sum \limits _{j=1}^s\left( p_{\lambda _n}(\beta _{j0}+\alpha _nu_j)-p_{\lambda _n}(\beta _{j0})\right) \\ &{}=&{}-\sum \limits _{i=1}^n\{-f^{-q_n}(y_i-h(x_i^T\beta _0))f'(y_i-h(x_i^T\beta _0))\left( h(x_i^T(\beta _0+\alpha _nu))-h(x_i^T\beta _0)\right) \\ &{}&{}-\frac{1}{2}\left( h(x_i^T(\beta _0+\alpha _nu))-h(x_i^T\beta _0)\right) ^2f^{-1-q_n}(y_i-{\tilde{h}}(x_i^T\beta _0))\\ &{}&{}\cdot [f(y_i-{\tilde{h}}(x_i^T\beta _0))f''(y_i-{\tilde{h}}(x_i^T\beta _0))-q_nf'^2(y_i-{\tilde{h}}(x_i^T\beta _0))]\}\\ &{}&{}-n\sum \limits _{j=1}^s\left( p'_{\lambda _n}(\beta _{j0})\alpha _nu_j+\frac{1}{2}p''_{\lambda _n}({\tilde{\beta }}_j)(\alpha _nu_j)^2\right) \\ &{}=&{}\sum \limits _{i=1}^n\{f^{-q_n}(y_i-h(x_i^T\beta _0))f'(y_i-h(x_i^T\beta _0))h'(x_i^T\beta ^*)x_i^T\alpha _nu\\ &{}&{}-\frac{1}{2}h'^2(x_i^T\beta ^*)(x_i^T\alpha _nu)^2f^{-1-q_n}(y_i-{\tilde{h}}(x_i^T\beta _0))\\ &{}&{}\cdot [f(y_i-{\tilde{h}}(x_i^T\beta _0))f''(y_i-{\tilde{h}}(x_i^T\beta _0))-q_nf'^2(y_i-{\tilde{h}}(x_i^T\beta _0))]\}\\ &{}&{}-n\sum \limits _{j=1}^s\left( p'_{\lambda _n}(\beta _{j0})\alpha _nu_j+\frac{1}{2}p''_{\lambda _n}({\tilde{\beta }}_j)(\alpha _nu_j)^2\right) \\ &{}=&{}\alpha _n\sum \limits _{i=1}^nf^{-q_n}(y_i-h(x_i^T\beta _0))f'(y_i-h(x_i^T\beta _0))h'(x_i^T\beta ^*)x_i^Tu\\ &{}&{}-\frac{1}{2}n\alpha ^2_nu^TI(\beta ^*)u(1+o_P(1))\\ &{}&{}-n\sum \limits _{j=1}^s\left( p'_{\lambda _n}(\beta _{j0})\alpha _nu_j+\frac{1}{2}p''_{\lambda _n}({\tilde{\beta }}_j)(\alpha _nu_j)^2\right) \\ &{}=&{}T_1+T_2+T_3, \end{array} \end{aligned}$$
(7.2)

where \({\tilde{h}}(x_i^T\beta _0)\) is between \(h(x_i^T(\beta _0+\alpha _nu))\) and \(h(x_i^T\beta _0)\), \({\tilde{\beta }}\) and \(\beta ^*\) is between \(\beta _0\) and \(\beta _0+\alpha _nu\).

Note that \(E(f^{-q_n}(e_i)f'(e_i))^2<\infty \). By the condition (A) and weak large number theorem, we easily obtain

$$\begin{aligned} \begin{array}{lll} T_1&{}=&{}-\alpha _n\sum \limits _{i=1}^nf^{-q_n}(e_i)f'(e_i)h'(x_i^T{\tilde{\beta }}_0)x_i^Tu\\ &{}&{} \rightarrow -\alpha _nE\left( f^{-q_n}(e_i)f'(e_i)\right) \sum \limits _{i=1}^nh'(x_i^T{\tilde{\beta }}_0)x_i^Tu=0. \end{array} \end{aligned}$$
(7.3)

Since f, \(f'\), \(f''\) and h are continuous, we have

$$\begin{aligned} T_2= & {} -\frac{1}{2}n\alpha _n^2u^TI(\beta _0)u(1+o_P(1))=O_P(n\alpha _n^2\Vert u\Vert ^2). \end{aligned}$$
(7.4)
$$\begin{aligned} T_3= & {} -\left( O(n\alpha _n\Vert u\Vert )+o(n\alpha _n^2\Vert u\Vert ^2)\right) . \end{aligned}$$
(7.5)

Thus, (7.1) follows from (7.2)–(7.5). \(\square \)

Proof of Lemma 3.2

It is sufficient to show, for \(j=s+1,\ldots ,d\),

$$\begin{aligned} \frac{\partial Q(\beta )}{\partial \beta _j}:\left\{ \begin{array}{cc}<0,&{} 0<\beta _j<cn^{-\frac{1}{2}},\\ >0,&{} -cn^{-\frac{1}{2}}<\beta _j<0. \end{array} \right. \end{aligned}$$
(7.6)

By Taylor!‘\(^{-}\)s expansion, we have

$$\begin{aligned} \frac{\partial Q(\beta )}{\partial \beta _j}= & {} -\sum \limits _{i=1}^nf^{-q_n}(e_i)f'(e_i)h'(x_i^T\beta )x_{ij}-np'_{\lambda _n}(\beta _j) \nonumber \\= & {} -\sum \limits _{i=1}^nh'(x_i^T\beta _0)x_{ij}f^{-q_n}(e_{i0})f'(e_{i0})-np'_{\lambda _n}(\beta _j) \nonumber \\{} & {} +\sum \limits _{i=1}^nx_{ij}f^{-1-q_n}(e_{i0})\nonumber \\{} & {} \cdot \left( h'^2(x_i^T\beta _0)(f(e_{i0})f''(e_{i0})-q_nf'^2(e_{i0}))-h''^2(x_i^T\beta _0)f(e_{i0})f'(e_{i0})\right) \nonumber \\{} & {} \cdot \sum \limits _{l=1}^dx_{il}(\beta _l-\beta _{l0})\nonumber \\{} & {} -\sum \limits _{i=1}^nx_{ij}h''(x_i^T\beta _0)f^{-q_n}(e_{i0})f'(e_{i0})\sum \limits _{l=1}^dx_{il}(\beta _l-\beta _{l0})\nonumber \\{} & {} +\frac{1}{2}\sum \limits _{i=1}^n\frac{\partial ^3L_q(f(e_i))}{\partial \beta _j\partial \beta _l\partial \beta _k}|_{\beta =\beta ^*}x_{ij} \sum \limits _{l=1}^d\sum \limits _{k=1}^dx_{il}x_{ik}(\beta _l-\beta _{l0})(\beta _k-\beta _{k0})\nonumber \\= & {} T_1+T_2+T_3+T_4+T_5, \end{aligned}$$
(7.7)

where \(e_{i0}=y_i-h(x_i^T\beta _0)\), \(e^*_i=y_i-h(x_i^T\beta ^*)\), \(\beta ^*\) is between \(\beta _0\) and \(\beta \). Observe that we have

$$\begin{aligned} T_1\rightarrow -E(f^{-q_n}(e_{i0})f'(e_{i0}))\sum _{i=1}^nh'(x_i^T\beta _0)x_{ij}=0, \end{aligned}$$
(7.8)
$$\begin{aligned} T_2=-n\lambda _n\cdot \frac{p'_{\lambda _n}(\beta _j)}{\lambda _n}, \end{aligned}$$
(7.9)
$$\begin{aligned} T_3\rightarrow I_{jl}\sum _{i=1}^nx_{ij}h'^2(x_i^T\beta _0)\sum _{l=1}^dx_{il}(\beta _l-\beta _{l0})=O_P(n^{\frac{1}{2}}), \end{aligned}$$
(7.10)
$$\begin{aligned} T_4\rightarrow E\left( f^{-q_n}(e_{i0})f'(e_{i0})\right) \sum _{i=1}^nx_{ij}h''(x_i^T\beta _0)\sum _{l=1}^dx_{il}(\beta _l-\beta _{l0})=0, \end{aligned}$$
(7.11)
$$\begin{aligned} T_5\le C\sum _{i=1}^nx_{ij}\sum _{l=1}^d\sum _{k=1}^dx_{il}x_{ik}(\beta _l-\beta _{l0})(\beta _k-\beta _{k0})=O(1). \end{aligned}$$
(7.12)

By \(n^{-\frac{1}{2}}\lambda _n\rightarrow 0\), we have

$$\begin{aligned} \begin{array}{lll} \frac{\partial Q(\beta )}{\partial \beta _j}&{}=&{}n\lambda _n\left( -\frac{p'_{\lambda _n}(\beta _j)}{\lambda _n}-n^{-\frac{1}{2}}\lambda ^{-1}_n- O(1)(n\lambda _n)^{-1}+o_P(1)\right) \\ &{}=&{}n\lambda _n\left( -\frac{p'_{\lambda _n}(\beta _j)}{\lambda _n}+o_P(1)\right) . \end{array} \end{aligned}$$
(7.13)

Note that \(\liminf _{n\rightarrow \infty }\liminf _{\theta \rightarrow 0^+}\frac{p'_{\lambda _n}(\theta )}{\lambda _n}>0\), and \(\liminf _{n\rightarrow \infty }\liminf _{\theta \rightarrow 0^-}\frac{p'_{\lambda _n}(\theta )}{\lambda _n}<0\). Hence, (7.6) follows from (7.13). \(\square \)

Proof of Theorem 3.1

By Lemma 3.2, we only prove the asymptotic normality.

For \(j=1,2,\ldots ,s\), we have

$$\begin{aligned} 0= & {} \frac{\partial Q(\beta )}{\partial \beta _j}|_{\beta =({\hat{\beta }}_1^T,0)^T} \nonumber \\= & {} -\sum \limits _{i=1}^nf^{-q_n}({\hat{e}}_i)f'({\hat{e}}_i)h'(x_i^T{\hat{\beta }})x_{ij}-np'_{\lambda _n}({\hat{\beta }}_j)\nonumber \\= & {} -\sum \limits _{i=1}^nh'(x_i^T\beta _0)x_{ij}f^{-q_n}(e_{i0})f'(e_{i0})\nonumber \\{} & {} +\sum \limits _{i=1}^nx_{ij}\{h'^2(x_i^T\beta ^*)f^{-1-q_n}(e^*_i)\left( f(e^*_i)f''(e^*_i)-q_nf'^2(e^*_i)\right) \nonumber \\{} & {} -h''(x_i^T\beta ^*)f^{-q_n}(e^*_i)f'(e^*_i)\}\sum \limits _{l=1}^dx_{il}({\hat{\beta }}_l-\beta _{l0})\nonumber \\{} & {} -n\left( p'_{\lambda _n}(\beta _{j0})+p''_{\lambda _n}(\beta ^*_j)({\hat{\beta }}_j-\beta _{j0})\right) . \end{aligned}$$
(7.14)

By (7.10), we have

$$\begin{aligned}{} & {} \sqrt{n}({\hat{\beta }}_1-\beta _{10})\nonumber \\{} & {} \quad =-\left\{ (b+o_P(1))\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_i(x_{i1},x_{i2},\ldots ,x_{is})+ p''_{\lambda _n}(\beta ^*_1)\right\} ^{-1}\nonumber \\{} & {} \quad \cdot \left\{ n^{-\frac{1}{2}}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_if^{-q_n}(e_{i0})f'(e_{i0})+\sqrt{n}p'_{\lambda _n}(\beta _1)\right\} \nonumber \\{} & {} \quad =-\left\{ b\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_i(x_{i1},x_{i2},\ldots ,x_{is})+ p''_{\lambda _n}(\beta ^*_1)\right\} ^{-1}\nonumber \\{} & {} \quad \cdot \left\{ n^{-\frac{1}{2}}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_if^{-q_n}(e_{i0})f'(e_{i0})+\sqrt{n}p'_{\lambda _n}(\beta _1)\right\} +o_P(1).\nonumber \\ \end{aligned}$$
(7.15)

Taking \(\forall u=(u_1,u_2,\ldots ,u_s)\) such that \(\Vert u\Vert =1\), we will prove that

$$\begin{aligned} n^{-\frac{1}{2}}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_if^{-q_n}(e_{i0})f'(e_{i0}) \rightarrow N\left( 0,Var(f^{-q_n}(e_{i0})f'(e_{i0}))C_{11}\right) .\nonumber \\ \end{aligned}$$
(7.16)

Since \(\left\{ \sum _{j=1}^su_jx_{ij}f^{-q_n}(e_{i0})f'(e_{i0}),\quad i=1,2,\ldots ,n \right\} \) are independent random variables, we have

$$\begin{aligned} Var\left( \sum \limits _{j=1}^su_jx_{ij}f^{-q_n}(e_{i0})f'(e_{i0})\right) =Var\left( f^{-q_n}(e_{i0})f'(e_{i0})\right) \sum \limits _{j=1}^s(u_jx_{ij})^2 \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lll} B_n^2&{}=&{}\sum \limits _{i=1}^nh'^2(x_i^T\beta _0)Var\left( \sum \limits _{j=1}^su_jx_{ij}f^{-q_n}(e_{i0})f'(e_{i0})\right) \\ &{}=&{}Var\left( f^{-q_n}(e_{i0})f'(e_{i0})\right) \sum \limits _{i=1}^nh'^2(x_i^T\beta _0)\sum \limits _{j=1}^s(u_jx_{ij})^2 =O(n). \end{array} \end{aligned}$$
(7.17)

Note that

$$\begin{aligned} \begin{array}{lll} &{}&{}\sum \limits _{i=1}^nE\left| h'(x_i^T\beta _0)\sum \limits _{j=1}^su_jx_{ij}f^{-q_n}(e_{i0})f'(e_{i0})\right| ^v\\ &{}&{}\quad \le C\sum \limits _{i=1}^n|h'(x_i^T\beta _0)|^v\left| \sum \limits _{j=1}^su_jx_{ij}\right| ^vE\left| f^{-q_n}(e_{i0})f'(e_{i0})\right| ^v\\ &{}&{} \quad =CE\left| f^{-q_n}(e_{i0})f'(e_{i0})\right| ^v\sum \limits _{i=1}^n|h'(x_i^T\beta _0)|^v \left| \sum \limits _{j=1}^su_jx_{ij}\right| ^v\\ &{}&{}\quad \le Cn=o(B_n^v). \end{array} \nonumber \\ \end{aligned}$$
(7.18)

By the central limit theorem, we have

$$\begin{aligned} \begin{array}{lll} &{}&{}\sum \limits _{i=1}^nh'(x_i^T\beta _0)\sum \limits _{j=1}^su_jx_{ij}f^{-q_n}(e_{i0})f'(e_{i0})\\ &{}&{}\quad \rightarrow N(E(f^{-q_n}(e_{i0})f'(e_{i0}))\sum \limits _{i=1}^nh'(x_i^T\beta _0)\sum \limits _{j=1}^su_jx_{ij},\\ &{}&{}\quad Var\left( f^{-q_n}(e_{i0})f'(e_{i0})\right) \sum \limits _{i=1}^nh'^2(x_i^T\beta _0)\sum \limits _{j=1}^s(u_jx_{ij})^2) \end{array} \end{aligned}$$
(7.19)

Thus (7.12) follows from \(E(f^{-q_n}(e_{i0})f'(e_{i0}))=0\) and (7.15). Note that

$$\begin{aligned} \begin{array}{lll} &{}&{}E\left( \sqrt{n}({\hat{\beta }}_1-\beta _{10})\right) \\ &{}&{}\quad =-\left\{ bn^{-1}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_i(x_{i1},x_{i2},\ldots ,x_{is})+ p''_{\lambda _n}(\beta ^*_1)\right\} ^{-1}\\ &{}&{}\quad \sqrt{n}p'_{\lambda _n}(\beta ^*_1) \end{array} \end{aligned}$$
(7.20)

and

$$\begin{aligned} \begin{array}{lll} &{}&{}Var\left( \sqrt{n}({\hat{\beta }}_1-\beta _{10})\right) \\ &{}&{}\quad =\left\{ bn^{-1}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_i(x_{i1},x_{i2},\ldots ,x_{is})+ p''_{\lambda _n}(\beta ^*_1)\right\} ^{-1}\\ &{}&{}\quad \cdot Var\left\{ f^{-q_n}(e_{i0})f'(e_{i0})\right\} C_{11}\\ &{}&{}\quad \cdot \left\{ bn^{-1}\sum \limits _{i=1}^nh'(x_i^T\beta _0)x^{(s)}_i(x_{i1},x_{i2},\ldots ,x_{is})+ p''_{\lambda _n}(\beta ^*_1)\right\} ^{-T}. \end{array} \nonumber \\ \end{aligned}$$
(7.21)

By (7.11)(7.12) and (7.16)(7.17), we complete the proof. \(\square \)

Proof of Theorem 4.1

For the objective function of \(PL_qE\), corresponding to the population level is given by

$$\begin{aligned} E_{F_\varepsilon }(L_qf(y-h(x^T\beta )))-\sum \limits _{j=1}^d p_\lambda (\beta _j)=E_{F_\varepsilon }(L_qf(e))-\sum \limits _{j=1}^d p_\lambda (\beta _j). \end{aligned}$$
(7.22)

After differentiating with respect to \(\beta \) and setting its derivative equal to zero (the solution is denoted as \(\beta _{PL_qE}(F_\varepsilon )\)), we get

$$\begin{aligned} \begin{array}{lll} &{}&{}-(1-\varepsilon )E_{F_0}\left( f^{-q}(e)f'(e)h'(x^T\beta _{PL_qE}(F_\varepsilon ))x\right) \\ &{}&{}-\varepsilon f^{-q}(e_0)f'(e_0)h'(x_0^T\beta _{PL_qE}(F_\varepsilon ))x_0-p'_\lambda (\beta _{PL_qE}(F_\varepsilon ))=0. \end{array} \end{aligned}$$
(7.23)

Derivation formula (7.23) with respect to \(\varepsilon \), and taking the limit as \(\varepsilon \rightarrow 0\), we yield

$$\begin{aligned} \begin{array}{lll} &{}&{}E_{F_0}\left( f^{-q}(e)f'(e)h'(x^T\beta _{PL_qE}(F_\varepsilon ))x\right) \\ &{}&{}\quad -(1-\varepsilon )E_{F_0}\{[qf^{-q-1}(e)f'^2(e)h'^2(x^T\beta _{PL_qE}(F_\varepsilon ))\\ &{}&{}\quad -f^{-q}(e)f''(e)h'^2(x^T\beta _{PL_qE}(F_\varepsilon )) +f^{-q}(e)f'(e)h''(x^T\beta _{PL_qE}(F_\varepsilon ))]xx^T\}\\ &{}&{}\qquad \frac{\partial }{\partial \varepsilon }\beta _{PL_qE}(F_\varepsilon )\\ &{}&{}\quad -f^{-q}(e_0)f'(e_0)h'(x_0^T\beta _{PL_qE}(F_\varepsilon ))x_0\\ &{}&{}\quad -\varepsilon [qf^{-q-1}(e_0)f'^2(e_0)h'^2(x_0^T\beta _{PL_qE}(F_\varepsilon )) -f^{-q}(e_0)f''(e_0)h'^2(x_0^T\beta _{PL_qE}(F_\varepsilon ))\\ &{}&{}\quad +f^{-q}(e_0)f'(e_0)h''(x_0^T\beta _{PL_qE}(F_\varepsilon ))]x_0x_0^T]\frac{\partial }{\partial \varepsilon }\beta _{PL_qE}(F_\varepsilon )\\ &{}&{}\qquad -diag(p''_\lambda (\beta _{PL_qE}(F_\varepsilon )))=0. \end{array} \nonumber \\ \end{aligned}$$
(7.24)

Note that

$$\begin{aligned} \frac{\partial }{\partial \varepsilon }(\beta _{PL_qE}(F_\varepsilon ))|_{\varepsilon =0}=IF((x_0,y_0),\beta _{PL_qE},F_0), \end{aligned}$$

we easily obtain the Theorem 4.1.

To verify Corollary 4.2, we first give a lemma (see Xia 2003). \(\square \)

Lemma 7.1

Let A and B be real symmetric matrices of order n, and A is a positive definite matrix, then A and B can be contract diagonalized at the same time.

Proof of Corollary 4.2

Let \(B=xx^T-b^{-1}U, A=bB^{-1}=(a_{ij})_{d\times d}\), \(l(e_0)=f^{-q}(e_0)f'(e_0)\), \(l(e)=f^{-q}(e)f'(e)\), \(D=l(e_0)x_0-E_{F_0}l(e)x\). Then

$$\begin{aligned} IF((x_0,y_0),\beta _{PL_qE},F_0)=AD. \end{aligned}$$
(7.25)

Note that

$$\begin{aligned} \begin{array}{lll} b&{}=&{}E_{F_0}{\tilde{e}}(y,\beta _{PL_qE}(F_0))\\ &{}=&{}E_{F_0}\left( (2\pi )^{\frac{q-1}{2}}((1-q)e^2-1)\exp \{\frac{q-1}{2}e^2\}\right) \\ &{}=&{}\int _{-\infty }^{+\infty }(2\pi )^{\frac{q-1}{2}}((1-q)v^2-1)\exp \{\frac{q-1}{2}v^2\}(2\pi )^{\frac{1}{2}}\exp \{-\frac{1}{2}v^2\}dv\\ &{}=&{}-(2\pi )^{\frac{q-1}{2}}(2-q)^{-\frac{3}{2}}. \end{array} \end{aligned}$$
(7.26)

By lemma 4.1, there exists an invertible matrix Q such that

$$\begin{aligned} Q(xx^T)Q^T=E{} & {} =diag(1,1,\ldots ,1),Q(b^{-1}U)Q^T\\{} & {} =diag(b^{-1}w_1,b^{-1}w_2,\ldots ,b^{-1}w_d). \end{aligned}$$

Thus

$$\begin{aligned} Q(xx^T)Q^T-Q(b^{-1}U)Q^T=diag(1-b^{-1}w_1,1-b^{-1}w_2,\ldots ,1-b^{-1}w_d). \end{aligned}$$

Since \(b\ne w_i\), the matrix B is invertible. Therefore,

$$\begin{aligned} \Vert A\Vert _1=\max _{1\le j\le d}\sum \limits _{i=1}^d|a_{ij}|<\infty . \end{aligned}$$
(7.27)

Obviously,

$$\begin{aligned} |l(e_0)|\le \frac{(2\pi )^{\frac{q-1}{2}}}{\sqrt{(1-q)e_0}}. \end{aligned}$$
(7.28)

Since \(l(e)=(2\pi )^{\frac{q-1}{2}}\exp \{\frac{q-1}{2}e^2\}e\) is an odd function for e,

$$\begin{aligned} E_{F_0}(l(e))x=0. \end{aligned}$$
(7.29)

Thus, by (7.28)(7.29), we have

$$\begin{aligned} \Vert D\Vert _1=|l(e_0)|\Vert x_0\Vert _1<\infty . \end{aligned}$$
(7.30)

The corollary follows from (7.25)(7.27) and (7.30). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Liu, M. & Zeng, Z. Penalized Lq-likelihood estimator and its influence function in generalized linear models. Metrika (2024). https://doi.org/10.1007/s00184-023-00943-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00184-023-00943-z

Keywords

Mathematics Subject Classification

Navigation