Skip to main content
Log in

Large deviations for randomly weighted least squares estimator in a nonlinear regression model

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this work, we introduce the random weighting method to the nonlinear regression model and study the asymptotic properties for the randomly weighted least squares estimator with dependent errors. The results reveal that this new estimator is consistent. Moreover, some simulations are also carried out to show the performance of the proposed estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barvinok A, Samorodnitsky A (2007) Random weighting, asymptotic counting, and inverse is operimetry. Israel J Math 158(1):159–191

    Article  MathSciNet  MATH  Google Scholar 

  • Block HW, Savits TH, Shaked M (1982) Some concepts of negative dependence. Ann Prob 10(3):765–772

    Article  MathSciNet  MATH  Google Scholar 

  • Bozorgnia A, Patterson RF, Taylor RL (1996) Limit theorems for dependent random variables. In: Proceedings of the first world congress of nonlinear analysts 92 (II), Walter de Grutyer, Berlin, 1639–1650

  • Chen PY, Bai P, Sung SH (2014) The von Bahr-Esseen moment inequality for pairwise independent random variables and applications. J Math Anal Appl 419(2):1290–1302

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YQ, Chen AY, Ng KW (2010) The strong law of large numbers for extended negatively dependent random variables. J Appl Prob 47:908–922

    Article  MathSciNet  MATH  Google Scholar 

  • Fang YX, Zhao LC (2006) Approximation to the distribution of LAD estimators for censored regression by random weighting method. J Stat Plan Inference 136(4):1302–1316

    Article  MathSciNet  MATH  Google Scholar 

  • Gao SS, Zhang JM, Zhou T (2003) Law of large numbers for sample mean of random weighting estimate. Inf Sci 155(1–2):151–156

    Article  MathSciNet  MATH  Google Scholar 

  • Gao SS, Zhong YM (2010) Random weighting estimation of kernel density. J Stat Plan Inference 140(9):2403–2407

    Article  MathSciNet  MATH  Google Scholar 

  • Hu SH (2002) The rate of convergence for the least squares estimator in nonlinear regression model with dependent errors. Sci China Ser A 45(2):137–146

    Article  MathSciNet  MATH  Google Scholar 

  • Hu SH (2004) Consistency for the least squares estimator in nonlinear regression model. Stat Prob Lett 67(2):183–192

    Article  MathSciNet  MATH  Google Scholar 

  • Ivanov AV (1976) An asymptotic expansion for the distribution of the least squares estimator of the nonlinear regression parameter. Theory Prob Appl 21(3):557–570

    Article  MATH  Google Scholar 

  • Jennrich RI (1969) Asymptotic properties of nonlinear least squares estimators. Ann Math Stat 40(2):633–643

    Article  MATH  Google Scholar 

  • Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11:286–295

    Article  MathSciNet  MATH  Google Scholar 

  • Lita da Silva J (2015) Almost sure convergence for weighted sums of extended negatively dependent random variables. Acta Math Hungarica 146(1):56–70

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L (2009) Precise large deviations for dependent random variables with heavy tails. Stat Prob Lett 79:1290–1298

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L (2010) Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Sci China Ser Math 53(6):1421–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann E (1966) Some concepts of dependence. Ann Math Stat 37:1137–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Malinvaud E (1970) The consistency of nonlinear regression. Ann Math Stat 41(3):956–969

    Article  MathSciNet  MATH  Google Scholar 

  • Miao Y, Tang YY (2021) Large deviation inequalities of LS estimator in nonlinear regression models. Stat Prob Lett, 168, Article ID 108930, https://doi.org/10.1016/j.spl.2020.108930

  • Ng KW, Tian GL, Tang ML (2011) Dirichlet and related distributions: theory, methods and applications, vol 888. John Wiley & Sons, London (Chapter 1, 2)

    Book  MATH  Google Scholar 

  • Narayanan A (1990) Computer generation of Dirichlet random vectors. J Stat Comput Simul 36(1):19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Prakasa Rao BLS (1984) The rate of convergence of the least squares estimator in a non-linear regression model with dependent errors. J Multivariate Anal 14(3):315–322

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9:130–134

    Article  MathSciNet  Google Scholar 

  • Shen AT (2011) Probability inequalities for END sequence and their applications. J Inequal Appl 2011:98, 12

    Article  MathSciNet  MATH  Google Scholar 

  • Sieders A, Dzhaparidze K (1987) A large deviation result for parameter estimators and its application to nonlinear regression analysis. The Annals of Statistics 15(3):1031–1049

    Article  MathSciNet  MATH  Google Scholar 

  • Staniewski P (1984) The Bootstrap in nonlinear regression. In: Rasch D, Tiku ML (eds) Robustness of statistical methods and nonparametric statistics. Theory and decision library (series b: mathematical and statistical methods), vol 1. Springer, Dordrecht, pp 139–142

    Chapter  Google Scholar 

  • Wang SJ, Wang XJ (2013) Precise large deviations for random sums of END real-valued random variables with consistent variation. J Math Anal Appl 402:660–667

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XJ, Hu SH, Shen AT, Yang WZ (2011) An exponential inequality for a NOD sequence and a strong law of large numbers. Appl Math Lett 24:219–223

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XJ, Li XQ, Hu SH, Wang XH (2014) On complete convergence for an extended negatively dependent sequence. Commun Stat Theory Methods 43(14):2923–2937

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XJ, Zheng LL, Xu C, Hu SH (2015) Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors. Statistics 49(2):396–407

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CF (1981) Asymptotic theory of nonlinear least squares estimation. Ann Stat 9(3):501–513

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y, Wang XJ, Hu T-C, Volodin A (2019) Complete \(f\)-moment convergence for extended negatively dependent random variables. RACSAM 113:333–351

    Article  MathSciNet  MATH  Google Scholar 

  • Xue LG, Zhu LX (2005) \(L_1\)-norm estimation and random weighting method in a semiparametric model. Acta Math Appl Sin 21(2):295–302

    Article  MathSciNet  MATH  Google Scholar 

  • Yang WZ, Hu SH (2014) Large deviation for a least squares estimator in a nonlinear regression model. Stat Prob Lett 91:135–144

    Article  MathSciNet  MATH  Google Scholar 

  • Yang WZ, Xu HY, Chen L, Hu SH (2018) Complete consistency of estimators for regression models based on extended negatively dependent errors. Stat Pap 59(2):449–465

    Article  MathSciNet  MATH  Google Scholar 

  • Yang WZ, Zhao ZR, Wang XH, Hu SH (2017) The large deviation results for the nonlinear regression model with dependent errors. TEST 26(2):261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng ZG (1987) Random weighting method. Acta Math Appl Sin 10(2):247–253

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to the Editor and anonymous referee for carefully reading the manuscript and valuable suggestions which helped in improving an earlier version of this paper. Supported by the National Natural Science Foundation of China (12201004, 12201079, 12201600), the National Social Science Foundation of China (22BTJ059), and the Natural Science Foundation of Anhui Province (2108085MA06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Wang.

Ethics declarations

Conflict of interests

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

Let \((W_{1},\cdots ,W_{n})\sim Dir(\alpha _{1},\cdots ,\alpha _{n})\) for each \(n\ge 1\) and \(\{\xi _{n},n\ge 1\}\) is a sequence of nonnegative END random variables. Then \(\{W_{n}\xi _{n},n\ge 1\}\) is still a sequence of END random variables.

Proof

It follows from Example 5.4 of Block et al. (1982) that \(\{W_{n},n\ge 1\}\) is a sequence of nonnegative NOD random variables, which is independent of \(\{\xi _{n},n\ge 1\}\). Hence, for any real numbers \(z_1,\cdots ,z_n\), we have by Definition 1.2 and the properties of NOD random variables (see in Bozorgnia et al. (1996) or Lemmas 1.1 and 1.2 of Wang et al. (2011) for example) that

$$\begin{aligned}{} & {} P\left( W_1\xi _1 \le z_1, \cdots ,W_n\xi _n\le z_n\right) \\{} & {} \quad =\int \cdots \int I\left( w_1 y_1 \le z_1, \cdots ,w_n y_n\le z_n\right) dF_{W_1,\cdots ,W_n,\xi _1,\cdots ,\xi _n}\left( w_1,\cdots ,w_n,y_1,\cdots ,y_n\right) \\{} & {} \quad =\int \cdots \int I\left( w_1 y_1 \le z_1, \cdots ,w_n y_n\le z_n\right) dF_{W_1,\cdots ,W_n}\left( w_1,\cdots ,w_n\right) dF_{\xi _1,\cdots ,\xi _n}\left( y_1,\cdots ,y_n\right) \\{} & {} \quad =\int \cdots \int P\left( w_1 \xi _1 \le z_1, \cdots ,w_n \xi _n\le z_n\right) dF_{W_1,\cdots ,W_n}\left( w_1,\cdots ,w_n\right) \\{} & {} \quad \le M\int \cdots \int P(w_1 \xi _1 \le z_1)\cdots P(w_n \xi _n\le z_n)dF_{W_1,\cdots ,W_n}\left( w_1,\cdots ,w_n\right) \\{} & {} \quad = ME\left[ F_{\xi _1}\left( \frac{z_1}{W_1}\right) \cdots F_{\xi _n}\left( \frac{z_n}{W_n}\right) \right] \le ME\left[ F_{\xi _1}\left( \frac{z_1}{W_1}\right) \right] \cdots E\left[ F_{\xi _n}\left( \frac{z_n}{W_n}\right) \right] \\{} & {} \quad =M\int \int I(w_1 y_1 \le z_1)dF_{W_1}(w_1)dF_{\xi _1}(y_1)\cdots \int \int I(w_n y_n \le z_n)dF_{W_n}(w_n)dF_{\xi _n}(y_n)\\{} & {} \quad =M\int \int I(w_1 y_1 \le z_1)dF_{W_1,\xi _1}(w_1,y_1)\cdots \int \int I(w_n y_n \le z_n)dF_{W_n,\xi _n}(w_n,y_n)\\{} & {} \quad =MP\left( W_1\xi _1 \le z_1)\cdots P(W_n\xi _n\le z_n\right) . \end{aligned}$$

Similarly, we also have that

$$\begin{aligned} P\left( W_1\xi _1>z_1, \cdots ,W_n\xi _n> z_n\right) \le M P\left( W_1\xi _1>z_1)\cdots P(W_n\xi _n>z_n\right) . \end{aligned}$$

Therefore, \(\{W_{n}\xi _{n},n\ge 1\}\) is still a sequence of END random variables by Definition 1.2 again. \(\square \)

Lemma A.2

Let \(\{a_{ni},1\le i\le n,n\ge 1\}\) be an array of real numbers and \(\{X_{n},n\ge 1\}\) be a sequence of END random variables with \(EX_{n}=0\) and \(E|X_{n}|^{p}<\infty \) for each \(n\ge 1\) and some \(p>1\). Then there exist positive constants \(C_{p}\) and \(C_{p}'\) depending only on p such that

$$\begin{aligned} E\left| \sum _{i=1}^{n}a_{ni}X_{i}\right| ^{p}\le & {} C_{p}\left[ \sum _{i=1}^{n}E|a_{ni}X_{i}|^{p}+\left( \sum \limits _{i=1}^{n}Ea_{ni}X_{i}^{2}\right) ^{p/2}\right] ,\text { if }p\ge 2,\\ E\left| \sum _{i=1}^{n}a_{ni}X_{i}\right| ^{p}\le & {} C_{p}'\sum _{i=1}^{n}E|a_{ni}X_{i}|^{p},\text { if }1<p<2.\end{aligned}$$

Proof

Noting that \(a_{ni}=a_{ni}^{+}-a_{ni}^{-}\) for each \(1\le i\le n\), \(n\ge 1\), the Rosenthal inequality above is a direct consequence of Corollary 3.2 in Shen (2011) by using \(C_{r}\)-inequality. The second inequality, i.e., Marcinkiewicz-Zygmund inequality can be obtained by the first one and the method used in the proof of Theorem 2.1 in Chen et al. (2014). The details are omitted. \(\square \)

Lemma A.3

Let \((Y_{1},\cdots ,Y_{n})\sim Dir(\alpha _{1},\cdots ,\alpha _{n})\) and \(\alpha _0=\sum _{i=1}^{n}\alpha _{i}\). Then for any \(p>0\) and each \(1\le i\le n\),

$$\begin{aligned} EY_{i}^{p}=\frac{\Gamma (\alpha _{0})\Gamma (\alpha _{i}+p)}{\Gamma (\alpha _{0}+p)\Gamma (\alpha _{i})}. \end{aligned}$$

Proof

Without loss of generality, we only need to show \(EY_{1}^{p}=\frac{\Gamma (\alpha _{0})\Gamma (\alpha _{1}+p)}{\Gamma (\alpha _{0}+p)\Gamma (\alpha _{1})}\). By Definition 1.1 and some standard calculation, we have that

$$\begin{aligned}{} & {} EY_{1}^{p}=\frac{\Gamma (\alpha _{0})}{\prod _{i=1}^{n}\Gamma (\alpha _{i})}\int _{0}^{1}y_{1}^{\alpha _{1}+p-1}dy_{1}\int _{0}^{1-y_{1}}y_{2}^{\alpha _{1}-1}dy_{2}\cdots \\{} & {} \qquad \quad \times \int _{0}^{1-\sum _{i=1}^{n-2}y_{i}}y_{n-1}^{\alpha _{n-1}-1}\left( 1-\sum _{i=1}^{n-1}y_{i}\right) ^{\alpha _{n}-1}dy_{n-1}\\{} & {} \quad =\frac{\Gamma (\alpha _{0})}{\prod _{i=1}^{n}\Gamma (\alpha _{i})}\int _{0}^{1}y_{1}^{\alpha _{1}+p-1}dy_{1}\int _{0}^{1-y_{1}}y_{2}^{\alpha _{1}-1}dy_{2} \cdots \\{} & {} \qquad \times \int _{0}^{1-\sum _{i=1}^{n-3}y_{i}}y_{n-2}^{\alpha _{n-2}-1}\left( 1-\sum _{i=1}^{n-2}y_{i}\right) ^{\alpha _{n-1}+\alpha _{n}-1}dy_{n-2}\int _{0}^{1} \eta _{n-1}^{\alpha _{n-1}-1}(1-\eta _{n-1})^{\alpha _{n}-1}d\eta _{n-1}\\{} & {} \quad =\frac{\Gamma (\alpha _{0})}{\prod _{i=1}^{n}\Gamma (\alpha _{i})}\int _{0}^{1}y_{1}^{\alpha _{1}+p-1}dy_{1}\int _{0}^{1-y_{1}}y_{2}^{\alpha _{1}-1}dy_{2} \cdots \\{} & {} \qquad \times \int _{0}^{1-\sum _{i=1}^{n-3}y_{i}}y_{n-2}^{\alpha _{n-2}-1}\left( 1-\sum _{i=1}^{n-2}y_{i}\right) ^{\alpha _{n-1}+\alpha _{n}-1}dy_{n-2}\cdot \frac{\Gamma (\alpha _{n-1}) \Gamma (\alpha _{n})}{\Gamma (\alpha _{n-1}+\alpha _{n})}\\{} & {} \quad =\cdots =\frac{\Gamma (\alpha _{0})}{\prod _{i=1}^{n}\Gamma (\alpha _{i})}\cdot \frac{\Gamma (\alpha _{1}+p)\prod _{i=2}^{n}\Gamma (\alpha _{i})}{\Gamma (\alpha _{0}+p)} =\frac{\Gamma (\alpha _{0})\Gamma (\alpha _{1}+p)}{\Gamma (\alpha _{0}+p)\Gamma (\alpha _{1})}, \end{aligned}$$

where the second equality above follows by letting \(\eta _{n-1}=y_{n-1}/\left( 1-\sum _{i=1}^{n-2}y_{i}\right) \). \(\square \)

Lemma A.4

(cf. Hu 2004) Let \((\Omega ,\mathscr {F},P)\) be a probability space, \([T_{1},T_{2}]\) be a closed interval on the real line. Assume that \(V(\theta )=V(\omega ,\theta )\) \((\theta \in [T_{1},T_{2}],\omega \in \Omega )\) is a stochastic process such that \(V(\omega ,\theta )\) is continuous for all \(\omega \in \Omega \). If there exist numbers \(\alpha >0\), \(r>0\) and \(C=C(T_{1},T_{2})<\infty \) such that

$$\begin{aligned} E|V(\theta _{1})-V(\theta _{2})|^{r}\le C|\theta _{1}-\theta _{2}|^{1+\alpha },~\text { for any }\theta _{1},\theta _{2}\in [T_{1},T_{2}],\end{aligned}$$

then for any \(\varepsilon >0\), \(a>0\), \(\theta _{0},\theta _{0}+\varepsilon \in [T_{1},T_{2}]\), and \(\gamma \in (2,2+\alpha )\), it has

$$\begin{aligned} P\left( \sup _{\theta _{0}\le \theta _{1},\theta _{2}\le \theta _{0}+\varepsilon }|V(\theta _{1})-V(\theta _{2})|\ge a\right) \le \frac{8C}{(\alpha -\gamma +2)(\alpha -\gamma +3)}\left( \frac{8\gamma }{\gamma -2}\right) ^{r}\frac{\varepsilon ^{\alpha +1}}{a^{r}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yu, W. & Wang, X. Large deviations for randomly weighted least squares estimator in a nonlinear regression model. Metrika (2023). https://doi.org/10.1007/s00184-023-00926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00184-023-00926-0

Keywords

Mathematics Subject Classification

Navigation