Skip to main content
Log in

On the exact distribution of the likelihood ratio test for testing the homogeneity of scale parameters of several two-parameter exponential distributions: complete and censored samples

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider the problem of providing the exact distribution of the likelihood ratio test (LRT) statistic for testing the homogeneity of scale parameters of \( k \ge 2 \) two-parameter exponential distributions. To this end, we apply the Millen inverse transform and the Jacobi polynomial expansion to the moments of LRT statistic. We consider the problem when the data are either complete or censored under the different kinds of Type II censoring, such as the Type II right, progressively Type II right, and double Type II censoring schemes. We also discuss the exact null distribution of the LRT when the data are censored under the Type I censoring scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexits G (1961) Convergence problems of orthogonal series. Pergamon press, New York

    MATH  Google Scholar 

  • Alvarez-Andradea S, Balakrishnan N, Bordes L (2007) Homogeneity tests based on several progressively Type-II censored samples. J Multivar Anal 98:1195–1213

    Article  MathSciNet  MATH  Google Scholar 

  • Bain LJ (1978) Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker, New York

    MATH  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications, series title: statistics for industry and technology. Springer, New York

    Google Scholar 

  • Balakrishnan N, Basu AP (1995) Exponential distribution: theory, methods and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Balakrishnan N, Stehlik M (2015) Likelihood testing with censored and missing duration data. J Stat Theory Pract 9:2–22

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Han D, Iliopoulos G (2011) Exact inference for progressively Type-I censored exponential failure data. Metrika 73:335–358

    Article  MathSciNet  MATH  Google Scholar 

  • Boik RJ (1993) Null distribution of a statistic for testing sphericity and additivity: a Jacobi polynomial expansion. Appl Stat 42(3):567–584

    Article  Google Scholar 

  • Bolkhovskaya OV, Maltsev AA, LoPresti L, Sellone F (2001) Approximation of the distribution function of a generalized likelihood ratio for the detection of spatial partially coherent signals in the short sample case. In: Institute of electrical and electronics engineers (IEEE) international conference on electromagnetics in advanced applications, Torino, 10–14 September

  • Cheng C, Chen J, Bai J (2013) Exact inferences of the two-parameter exponential distribution and Pareto distribution with censored data. J Appl Stat 40(7):1464–1479

    Article  MathSciNet  Google Scholar 

  • Cole KN, Nagarsenker PB, Nagarsenker BN (1987) A test for equality of exponential distributions based on Type-II censored samples. IEEE Trans Reliab 36(1):94–97

    Article  MATH  Google Scholar 

  • Derksen RW, Sullivan PJ (1990) Moment approximations for probability density functions. Combust Flame 81:378–391

    Article  Google Scholar 

  • Economou P, Stehlik M (2014) On small samples testing for frailty through homogeneity test. Commun Stat Simul Comput 44(1):20–65

    MathSciNet  MATH  Google Scholar 

  • Hill N, Padmanabhan A, Puri ML (1988) Adaptive nonparametric procedures and applications. Appl Stat 37(2):205–218

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh HK (1986) An exact test for comparing location parameters of k exponential distributions with unequal scales based on Type II censored data. Technometrics 28(2):157–164

    MathSciNet  MATH  Google Scholar 

  • Kalinin VM, Shalaevskii VO (1971) Investigations in classical problems of probability theory and mathematical statistics: part I. Consultants Bureau, New York

    Book  Google Scholar 

  • Luke YL (1969) The special functions and their approximations, vol I. Academic Press, New York

    MATH  Google Scholar 

  • Malekzadeh A, Jafari AA (2018) Testing equality of quantiles of two-parameter exponential distributions under progressive Type-II censoring. J Stat Theory Pract 12(4):776–793

    Article  MathSciNet  Google Scholar 

  • Maurya V, Goyal A, Gill AN (2011) Simultaneous testing for the successive differences of exponential location parameters under heteroscedasticity. Stat Probab Lett 81(10):1507–1517

    Article  MathSciNet  MATH  Google Scholar 

  • Nagarsenker BN (1976) Exact non-null distribution of the likelihood ratio criteria for covariance matrix. Can J Stat 4(2):237–254

    Article  MathSciNet  MATH  Google Scholar 

  • Nagarsenker PB (1980) On a test of equality of several exponential survival distributions. Biometrika 67(2):475–478

    Article  MathSciNet  MATH  Google Scholar 

  • Nagarsenker BN, Nagarsenker PB (1985) Distribution of LRT for testing the equality of several 2-parameter exponential distributions. IEEE Trans Reliab 34:65–68

    Article  MATH  Google Scholar 

  • Nagarsenker PB, Nagarsenker BN (1986) On a test of equality of scale parameters of several exponential distributions. Commun Stat Simul Comput 15(2):497–504

    Article  MathSciNet  MATH  Google Scholar 

  • Nagarsenker PB, Nagarsenker BN (1991) On a modified test of equality of scale parameters of exponential distributions. Commun Stat Theory Methods 20(2):735–745

    Article  MathSciNet  MATH  Google Scholar 

  • Nair US (1940) Application of factorial series in the study of distribution laws in statistics. Sankhya 5:175

    Google Scholar 

  • Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5:375–383

    Article  Google Scholar 

  • Provost SB (2005) Moment-based density approximants. Math J 9(4):727–756

    Google Scholar 

  • Reinking JT (2002) Orthogonal series representation of probability density and distribution functions. Math J. https://www.mathematica-journal.com/issue/v8i3/features/reinking/index.html

  • Sadooghi-Alvandi SM, Malekzadeh A (2013) A note on testing homogeneity of the scale parameters of several inverse Gaussian distributions. Stat Probab Lett 83:1844–1848

    Article  MathSciNet  MATH  Google Scholar 

  • Singh N (1985) A simple and asymptotically optimal test for the equality of k (k ≥2) exponential distributions based on type II censored samples. Commun Stat Theory Methods 14:1615–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Singh N, Cheng I (1986) Tests for equality of location & scale parameters of exponential distributions with Type-II censoring. IEEE Trans Reliab 35(2):208–211

    Article  MATH  Google Scholar 

  • Singh RS, Kumar N (2011) Lower confidence bounds for the probabilities of correct selection. J Probab Stat. https://doi.org/10.1155/2011/765058

    MathSciNet  MATH  Google Scholar 

  • Stehlik M (2003) Distributions of exact tests in the exponential family. Metrika 57:145–164

    Article  MathSciNet  MATH  Google Scholar 

  • Stehlik M (2006) Exact likelihood ratio scale and homogeneity testing of some loss processes. Stat Probab Lett 76:19–26

    Article  MathSciNet  MATH  Google Scholar 

  • Stehlik M (2008) Homogeneity and scale testing of generalized gamma distribution. Reliab Eng Syst Saf Reliab 93:1809–1813

    Article  Google Scholar 

  • Stehlik M (2009) Scale testing in small samples with missing time-to-failure information. Int J Reliab Qual Saf Eng 16(6):1–13

    Article  Google Scholar 

  • Stehlik M, Wagner H (2011) Exact likelihood ratio testing for homogeneity of exponential distribution. Commun Stat Simul Comput 40(5):663–684

    Article  MathSciNet  MATH  Google Scholar 

  • Thiagarajah KR (1995) Homogeneity tests for scale parameters of 2-parameter exponential populations under time censoring. IEEE Trans Reliab 44(2):297–301

    Article  Google Scholar 

  • Thiagarajah KR, Paul SR (1990) Testing for the equality of scale parameters of k exponential populations based on complete and Type II censored samples. Commun Stat Simul Computs 19(3):891–902

    Article  MathSciNet  MATH  Google Scholar 

  • Viveros R, Balakrishnan N (1994) Interval estimation of parameters of life from progressively censored data. Technometrics 36(1):84–91

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for their constructive comments. The first author would like to thank the Research Council of Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Kharrati-Kopaei.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendix

Appendix

Proof of Lemma 1

Note that \( \varvec{Z} = \left( {Z_{1} , \ldots ,Z_{k} } \right) = \left( {\frac{{Y_{1} }}{{\mathop \sum \nolimits_{i = 1}^{k} Y_{i} }}, \ldots ,\frac{{Y_{k} }}{{\mathop \sum \nolimits_{i = 1}^{k} Y_{i} }}} \right) \) has a Dirichlet distribution with parameter \( (\theta_{1} - 1, \ldots ,\theta_{k} - 1) \). Therefore, the \( h \)th moment of \( L \) under \( H_{0} \) is

$$ \begin{aligned} E_{{H_{0} }} \left( {L^{h} } \right) & = \frac{{{{\Theta }}^{h} }}{{\mathop \prod \nolimits_{i = 1}^{k} \theta_{i}^{{\frac{{\theta_{i} h}}{{{\Theta }}}}} }}\mathop \int \nolimits_{0}^{1} \ldots \mathop \int \nolimits_{0}^{1} \mathop \prod \limits_{i = 1}^{k} z_{i}^{{\theta_{i} h/{{\Theta }}}} \frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} - 1} \right)}}\mathop \prod \limits_{i = 1}^{k} z_{i}^{{\theta_{i} - 2}} dz_{1} \ldots dz_{k} \\ & = \frac{{{{\Theta }}^{h} }}{{\mathop \prod \nolimits_{i = 1}^{k} \theta_{i}^{{\theta_{i} h/{{\Theta }}}} }}\frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{{{\Gamma }}\left( {{{\Theta }} - k + h} \right)}}\mathop \prod \limits_{i = 1}^{k} \frac{{{{\Gamma }}\left( {\theta_{i} - 1 + \theta_{i} h/{{\Theta }}} \right)}}{{{{\Gamma }}\left( {\theta_{i} - 1} \right)}}. \\ \end{aligned} $$

Now, let \( V_{i} = \sigma_{i} Y_{i} /\mathop \sum \nolimits_{i = 1}^{k} \sigma_{i} Y_{i} \), \( i = 1, \ldots ,k \). It is easily verified that \( Y_{i} = (V_{i} /\sigma_{i} )/\mathop \sum \nolimits_{i = 1}^{k} (V_{i} /\sigma_{i} ) \) and thus the joint density function of \( \varvec{V} = (V_{1} , \ldots ,V_{k} ) \) is

$$ f_{\varvec{V}} \left( \varvec{v} \right) = \frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} - 1} \right)}}\frac{{\mathop \prod \nolimits_{i = 1}^{k} \left( {1/\sigma_{i} } \right)^{{\theta_{i} - 1}} }}{{\left( {\mathop \sum \nolimits_{i = 1}^{k} \frac{{v_{i} }}{\sigma }_{i} } \right)^{{{{\Theta }} - k}} }}\mathop \prod \limits_{i = 1}^{k} v_{i}^{{\theta_{i} - 2}} . $$

Therefore, the \( h \)th moment of \( L \) is

$$ \begin{aligned} E\left( {L^{h} } \right) & = \frac{{{{\Theta }}^{h} }}{{\mathop \prod \nolimits_{i = 1}^{k} \theta_{i}^{{\theta_{i} h/{{\Theta }}}} }}E_{\varvec{V}} \left( {\mathop \prod \limits_{i = 1}^{k} V_{i}^{{\frac{{\theta_{i} h}}{{{\Theta }}}}} } \right) = \frac{{{{\Theta }}^{h} }}{{\mathop \prod \nolimits_{i = 1}^{k} \theta_{i}^{{\theta_{i} h/{{\Theta }}}} }}\mathop \int \nolimits_{0}^{1} \ldots \mathop \int \nolimits_{0}^{1} \mathop \prod \limits_{i = 1}^{k} v_{i}^{{\theta_{i} h/{{\Theta }}}} f_{\varvec{V}} \left( \varvec{v} \right)dv_{1} \ldots dv_{k} \\ & = \frac{{{{\Theta }}^{h} {{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} \sigma_{i}^{{\theta_{i} - 1}} \theta_{i}^{{\theta_{i} h/{{\Theta }}}} {{\Gamma }}\left( {\theta_{i} - 1} \right)}}\mathop \int \nolimits_{0}^{1} \ldots \mathop \int \nolimits_{0}^{1} \left( {\mathop \sum \limits_{i = 1}^{k} \frac{{v_{i} }}{\sigma }_{i} } \right)^{{k - {{\Theta }}}} \mathop \prod \limits_{i = 1}^{k} v_{i}^{{\theta_{i} + \frac{{\theta_{i} h}}{{{\Theta }}} - 2}} dv_{1} \ldots dv_{k} \\ & = \frac{{{{\Theta }}^{h} {{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{{{\Gamma }}\left( {{{\Theta }} - k + h} \right)}}\mathop \prod \limits_{i = 1}^{k} \frac{{{{\Gamma }}(\theta_{i} + \theta_{i} h/{{\Theta }} - 1)}}{{\sigma_{i}^{{\theta_{i} - 1}} {{\Gamma }}\left( {\theta_{i} - 1} \right)\theta_{i}^{{\theta_{i} h/{{\Theta }}}} }}E_{\varvec{D}} \left( {\left( {\mathop \sum \limits_{i = 1}^{k} D_{i} /\sigma_{i} } \right)^{{k - {{\Theta }}}} } \right). \\ \end{aligned} $$

This completes the proof.□

Proof of Theorem 1

Here, we present a sketch of proof. For more detail, one can refer to Nagarsenker (1976). Let \( f_{L} (.) \) denote the density function of \( L \). If \( f_{L} (.) \) can be obtained in a closed form, then \( F_{L} (.) \) is obtained directly. By applying the Mellin inverse transform to \( E_{{H_{0} }} (L^{h} ) \) and changing variable \( h + {{\Theta }} = t \), we have

$$ \begin{aligned} f_{L} \left( l \right) & = \frac{1}{2\pi i}\mathop \int \nolimits_{ - i\infty }^{ + i\infty } l^{ - h - 1} E_{{H_{0} }} \left( {L^{h} } \right) dh \\ & = \frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} - 1} \right)}} l^{{{{\Theta }} - 1}} \mathop \prod \limits_{i = 1}^{k} \left( {\frac{{\theta_{i} }}{{{\Theta }}}} \right)^{{\theta_{i} }} \frac{1}{2\pi i}\mathop \int \nolimits_{{{{\Theta }} - i\infty }}^{{{{\Theta }} + i\infty }} l^{ - t} \phi \left( t \right) dt, \\ \end{aligned} $$

where \( \phi \left( t \right) = (\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} t/{{\Theta }} - 1} \right)\left( {{{\Theta }}/\theta_{i} } \right)^{{\theta_{i} t/{{\Theta }}}} )/{{\Gamma }}\left( {t - k} \right) \). We also generally have\( \log {{\Gamma }}(x + a) = \frac{1}{2}\log \left( {2\pi } \right) + \left( {x + a - \frac{1}{2}} \right)\log \left( x \right) - x - \mathop \sum \nolimits_{r = 1}^{m} \frac{{\left( { - 1} \right)^{r} B_{r + 1} \left( a \right)}}{{r\left( {r + 1} \right)x^{r} }} + R_{m + 1} \left( x \right), \)where \( R_{m} (x) \) is the remainder such that \( \left| {R_{m} \left( x \right)} \right| \le C/|x^{m} | \), \( C \) is a constant independent of \( x \) and \( B_{r} (a) \) is the Bernoulli polynomial of degree \( r \) and order one; see Nagarsenker (1976). Therefore, the expansion of \( \log (\phi \left( t \right)) \) is

$$ \begin{aligned} & \log \left( {\phi \left( t \right)} \right) = v\log \left( {2\pi } \right) - 1.5\mathop \sum \limits_{i = 1}^{k} \log \left( {\frac{{\theta_{i} }}{{{\Theta }}}} \right) - v\log \left( t \right) \\ & \quad + \mathop \sum \limits_{r = 1}^{m} \left( {\frac{1}{t}} \right)^{r} \left\{ {\frac{{\left( { - 1} \right)^{r} }}{{r\left( {r + 1} \right)}}\left( {B_{r + 1} \left( { - k} \right) - \mathop \sum \limits_{i = 1}^{k} B_{r + 1} \left( { - 1} \right)\left( {\frac{{{\Theta }}}{{\theta_{i} }}} \right)^{r} } \right)} \right\} + \mathop \sum \limits_{i = 1}^{k} R_{m + 1} \left( {\frac{{\theta_{i} t}}{{{\Theta }}}} \right) - R_{m + 1} \left( t \right), \\ \end{aligned} $$

where \( v = (k - 1)/2 \). By letting \( m \to \infty \),e have

$$ \phi \left( t \right) = \left( {2\pi } \right)^{v} t^{ - v} \mathop \prod \limits_{i = 1}^{k} \left( {\frac{{\theta_{i} }}{{{\Theta }}}} \right)^{ - 1.5} \left\{ {1 + \mathop \sum \limits_{j = 1}^{\infty } \beta_{j} /t^{j} } \right\}, $$
(A.1)

where \( \beta_{j} \)s are obtained recursively as \( \beta_{j} = \frac{1}{j}\mathop \sum \nolimits_{s = 1}^{j} s \alpha_{s} \beta_{j - s} \) with \( \beta_{0} = 1 \) in which

$$ \alpha_{s} = \frac{{\left( { - 1} \right)^{s} }}{{s\left( {s + 1} \right)}}\left\{ {B_{s + 1} \left( { - k} \right) - \mathop \sum \limits_{i = 1}^{k} B_{s + 1} \left( { - 1} \right)\left( {\frac{{{\Theta }}}{{\theta_{i} }}} \right)^{s} } \right\}, $$

see Kalinin and Shalaevskii (1971). Note that \( \left( {2\pi } \right)^{ - v} \mathop \prod \nolimits_{i = 1}^{k} \left( {\theta_{i} /{{\Theta }}} \right)^{1.5} \phi \left( t \right) = O\left( {t^{ - v} } \right) \). Therefore, \( \left( {2\pi } \right)^{ - v} \mathop \prod \nolimits_{i = 1}^{k} \left( {\theta_{i} /{{\Theta }}} \right)^{1.5} \phi \left( t \right) \) can be expanded as a factorial series of the form

$$ \left( {2\pi } \right)^{ - v} \mathop \prod \limits_{i = 1}^{k} \left( {\theta_{i} /{{\Theta }}} \right)^{1.5} \phi \left( t \right) = \mathop \sum \limits_{r = 1}^{\infty } R_{r} {{\Gamma }}(t)/{{\Gamma }}(t + r + v), $$
(A.2)

for any \( a \ge 0 \); see Nair (1940). The coefficient \( R_{r} \) can be obtained by equating the coefficients of the two series (A.1) and (A.2). In this regard, note that \( \log ({{\Gamma }}(t)/{{\Gamma }}(t + r + v)) \) can be expanded as \( - \left( {v + n} \right)\log \left( t \right) + \sum\nolimits_{j = 1}^{\infty } {A_{r,j} } /t^{j} \) where

$$ A_{r,j} = \frac{1}{{j\left( {j + 1} \right)}}\left( { - 1} \right)^{j - 1} \left\{ {B_{j + 1} \left( 0 \right) - B_{j + 1} \left( {v + r} \right)} \right\}. $$

Therefore, we can write \( \frac{\varGamma \left( t \right)}{{\varGamma \left( {t + r + v} \right)}} = t^{{ - \left( {v + r} \right)}} \left\{ {1 + \sum\nolimits_{j = 1}^{\infty } {\frac{{C_{r,j} }}{{t^{j} }}} } \right\} \) where \( C_{r,j} = \frac{1}{j}\sum\nolimits_{q = 1}^{j} q A_{r,q} C_{r,j - q} \) with \( C_{r,0} = 1 \). Finally, the coefficients \( R_{r} \) are obtained recursively by \( \sum\nolimits_{j = 0}^{i} {R_{i - j} } C_{i - j,j} = \beta_{i} \) with \( R_{0} = 1 \). Now, \( f_{L} (l) \) can be obtained by integrating term by term of (A.2) since a factorial series is uniformly convergent in a half-plane; see Nagarsenker (1976). Therefore, we have

$$ \begin{aligned} f_{L} \left( l \right) & = \left( {2\pi } \right)^{v} l^{{{{\Theta }} - 1}} \frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} - 1} \right)}} \mathop \prod \limits_{i = 1}^{k} \left( {\frac{{\theta_{i} }}{{{\Theta }}}} \right)^{{\theta_{i} - 1.5}} \frac{1}{2\pi i}\mathop \int \nolimits_{{{{\Theta }} - i\infty }}^{{{{\Theta }} + i\infty }} l^{ - t} \mathop \sum \limits_{r = 0}^{\infty } R_{r} \frac{{{{\Gamma }}\left( t \right)}}{{{{\Gamma }}\left( {t + r + v} \right)}}dt \\ & = \left( {2\pi } \right)^{v} l^{{{{\Theta }} - 1}} \frac{{{{\Gamma }}\left( {{{\Theta }} - k} \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} {{\Gamma }}\left( {\theta_{i} - 1} \right)}} \mathop \prod \limits_{i = 1}^{k} \left( {\frac{{\theta_{i} }}{{{\Theta }}}} \right)^{{\theta_{i} - 1.5}} \mathop \sum \limits_{r = 0}^{\infty } R_{r} \frac{1}{2\pi i}\mathop \int \nolimits_{{{{\Theta }} - i\infty }}^{{{{\Theta }} + i\infty }} l^{ - t} \frac{{{{\Gamma }}\left( t \right)}}{{{{\Gamma }}\left( {t + r + v} \right)}} dt. \\ \end{aligned} $$

However, \( \frac{1}{2\pi i}\mathop \int \nolimits_{{{{\Theta }} - i\infty }}^{{{{\Theta }} + i\infty }} l^{ - t} {{\Gamma }}(t)/{{\Gamma }}\left( {t + r + v} \right) dt = l\left( {1 - l} \right)^{v + r - 1} /{{\Gamma }}(v + r) \); see Nagarsenker (1976). This completes the proof.□

Proof of Theorem 2

Note that the support of \( L \) is \( (0, 1) \) since \( {{\Lambda }} \) is the LRT statistic. By matching the first two moments of Beta \( (p,q) \) random variable and \( L \), we have

$$ p = \frac{{E_{{H_{0} }} \left( L \right)\left( {E_{{H_{0} }} \left( L \right) - E_{{H_{0} }} \left( {L^{2} } \right)} \right)}}{{E_{{H_{0} }} \left( {L^{2} } \right) - E_{{H_{0} }}^{2} \left( L \right)}} \;\;{\text{and}}\;\; q = \frac{{\left( {E_{{H_{0} }} \left( L \right) - E_{{H_{0} }} \left( {L^{2} } \right)} \right)\left( {1 - E_{{H_{0} }} \left( L \right)} \right)}}{{E_{{H_{0} }} \left( {L^{2} } \right) - E_{{H_{0} }}^{2} \left( L \right)}}. $$

In this case, it can be easily verified that \( c_{1} = c_{2} = 0 \). It completes the proof.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrati-Kopaei, M., Malekzadeh, A. On the exact distribution of the likelihood ratio test for testing the homogeneity of scale parameters of several two-parameter exponential distributions: complete and censored samples. Metrika 82, 409–427 (2019). https://doi.org/10.1007/s00184-018-00704-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-00704-3

Keywords

Mathematics Subject Classification

Navigation