Skip to main content
Log in

Noncooperative oligopoly equilibrium in markets with hierarchical competition

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

In this paper we study a non-cooperative sequential equilibrium concept, namely the Stackelberg–Nash equilibrium, in a game in which heterogeneous atomic traders interact in interrelated markets. To this end, we consider a two-stage quantity setting strategic market game with a finite number of traders. Within this framework, we define a Stackelberg–Nash equilibrium. Then, we show existence and local uniqueness of a Stackelberg–Nash equilibrium with trade. To this end, we use a differentiable approach: the vector mapping which determines the strategies of followers is a smooth local diffeomorphism, and the set of Stackelberg–Nash equilibria with trade is discrete, i.e., the interior equilibria of the game are locally unique. We also compare through examples the sequential and the simultaneous moves games. A striking difference is that exchange can take place in one subgame while autarky can hold in another subgame, in which case only leaders (followers) make trade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The bilateral oligopoly model is a two-good version of the strategic market games introduced by Shubik (1973), Shapley and Shubik (1977). See Giraud (2003), and Dickson and Tonin (2021) for surveys.

  2. The modeling of production activities in interrelated imperfectly competitive markets raise some difficulties (Gabszewicz and Vial 1972; Dierker and Grodal 1999). It turns out that the exchange model is a natural starting point to consider new issues in interrelated markets.

  3. On the number of equilibria in finite games, see also Bubelis (1979). On the study of inefficiency in strategic market games under a differentiable approach, see Aghion (1985).

  4. From a methodological viewpoint, our model crosses two types of literature on noncooperative equilibria: the multiple leader-follower games and the bilateral oligopoly models. Existence is studied in the multiple leader-follower model in Sherali (1984) and Ehrenmann (2004). Yu and Wang (2008), Hu and Fukushima (2011), and Jia et al. (2015) prove the existence of an equilibrium point with two leaders without specifying demand and costs. Kulkarni and Shanbhag (2015) show that when the leaders’ objectives admit a quasi-potential function, the global and local minimizers of the leaders’ problems are global and local equilibria of the game. For more details and references, see Dempe and Zemkoho (2020).

  5. In a Stackelberg model, for each commodity there are leaders and followers who compete in quantity. Thus, Groh’s model can be seen as a special case of ours where one good is held only by leaders and the other only by followers, and where the utility functions are specific.

  6. If Y is viewed as commodity money, i.e. a numeraire, then quantities of Y (resp. X) are bids (resp. offers) and the corresponding agents are buyers (resp. sellers).

  7. It is worth noting that with several followers, by contrast with the duopoly game in which the best reply of the follower always coincides with her strategy, the followers’ best replies differ from their strategies. The existence of smooth strategies is studied in Sect. 4.

  8. In the basic multiple leader-follower game, the first-movers achieve higher (resp. lower) payoffs than the second-movers when strategies are substitutes (resp. complements). In addition, the sequential game provides higher payoffs to the agents who are first-movers than the payoffs they reach when they play a simultaneous move game. For a survey, see Julien (2018).

  9. It can be shown that each leader’s payoff is a strictly concave function of her supply. The proof is available upon request.

  10. Example 1 also shows that multiple Cournot-Nash equilibria with trade can exist. On this point, see Sect. 5 for a comparison between the SNE and the CNE.

  11. Consider Example 1 but with \(T_{X}^{L}=\{1\}\), \(T_{X}^{F}=\{2\}\), \(T_{Y}^{L}=\{1\}\), and \(T_{Y}^{F}=\{2\}\). Then, there is a unique SNE strategy profile given by \((\tilde{q}_{1},\tilde{q}_{2};\tilde{b}_{1},\tilde{ b}_{2})=(\frac{\sqrt{21}-3}{4},\frac{3+\sqrt{9-\sqrt{21}}-\sqrt{21}}{4}; \frac{3+\sqrt{9-\sqrt{21}}-\sqrt{21}}{4},\frac{\sqrt{21}-3}{4})\).

  12. The same holds when traders have the same endowments but different utility functions.

  13. Indeed, consider leader \(i\in T_{X}^{L}\). Equation (E2) in Appendix E (with \(\epsilon =0\)), i.e., \(\frac{\partial \pi _{i}}{\partial q_{i}}{ =-} \frac{\partial u_{i}}{\partial x_{i}}{ +\chi p}_{X}\frac{\partial u_{i} }{\partial y_{i}}\), defines implicitly \(\phi _{i}(\textbf{q}_{-i}^{L}; \textbf{b}^{L})\). By partially differentiating the identity \(\frac{\partial \pi _{i}}{\partial q_{i}}(q_{i},\textbf{q}_{-i}^{L},{{\varvec{\sigma }}}(q_{i}, \textbf{q}_{-i}^{L};\textbf{b}^{L});\textbf{b}^{L},{{\varvec{\sigma }}}(q_{i}, \textbf{q}_{-i}^{L};\textbf{b}^{L}))\equiv 0\), with respect to \(q_{-i}\) and \(b_{j}\), we can show that \(\frac{\partial \phi _{i}}{\partial q_{-i}}=-\frac{ \frac{\partial ^{2}\pi _{i}}{\partial q_{i}\partial q_{-i}}}{\frac{\partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}}\) and \(\frac{\partial \phi _{i}}{ \partial b_{j}}=-\frac{\frac{\partial ^{2}\pi _{i}}{\partial q_{i}\partial b_{j}}}{\frac{\partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}}\), where \(\frac{ \partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}\) is given by (E3) with \(\epsilon =0\), i.e., \(\frac{\partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}=- \frac{\partial ^{2}u_{i}}{(\partial x_{i})^{2}}+2p_{X}\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}-(\chi p_{X})^{2}\frac{\partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}+p_{X}\{\frac{(1+\chi )(1-\chi )}{\phi _{i}(.)}+\phi _{i}(.)[\frac{(1+\nu )^{2}}{Q^{2}}-\frac{\eta ^{2}q_{i}}{B^{2}} ]\frac{\partial u_{i}}{\partial y_{i}}\}\). As we have \(\frac{\partial ^{2}\pi _{i}}{\partial q_{i}\partial q_{-i}}=(1-\chi )p_{X}[\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}+\chi p_{X}\frac{\partial ^{2}u_{i}}{ (\partial y_{i})^{2}}]+p_{X}\{\frac{\chi (1-\chi )}{\phi _{i}(.)}+\phi _{i}(.)[\frac{(1+\nu )^{2}}{Q^{2}}-\frac{\eta ^{2}q_{i}}{B^{2}}]\}\frac{ \partial u_{i}}{\partial y_{i}}\), we conclude that \(\frac{\partial ^{2}\pi _{i}}{\partial q_{i}\partial q_{-i}}\ne -\frac{\partial ^{2}\pi _{i}}{ (\partial q_{i})^{2}}\). Moreover, we have that \(\frac{\partial ^{2}\pi _{i}}{ \partial q_{i}\partial b_{j}}=p_{X}\phi _{i}(.)(\frac{1+\eta }{B}-\frac{\nu }{Q})[-\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}+\chi p_{X} \frac{\partial ^{2}u_{i}}{(\partial y_{i})^{2}}]+\{p_{X}[\frac{(1+\nu )\nu }{ Q^{2}}-\frac{\eta (1+\eta )}{B^{2}}]+\chi (\frac{1+\eta }{Q}-\frac{\nu B}{ Q^{2}}]\}\frac{\partial u_{i}}{\partial y_{i}}\). Then ,we conlude \(\frac{ \partial ^{2}\pi _{i}}{\partial q_{i}\partial b_{j}}\ne -\frac{\partial ^{2}\pi _{i}}{(\partial q_{i})^{2}}\). The same results hold for leader \(j\in T_{Y}^{L}\).

  14. Take for instance \(\underline{\alpha }_{i}\leqslant \alpha _{i}\leqslant \overline{\alpha }_{i}\) in \({\mathcal {S}}_{i}\), with \(\underline{\alpha } _{i}\leqslant \phi _{i}(.)\leqslant \overline{\alpha _{i}}\), \(i\in T_{X}^{L}\) . Likewise, \(\underline{\beta }_{j}\leqslant \beta _{j}\leqslant \overline{ \beta }_{j}\) in \({\mathcal {S}}_{j}\), with \(\underline{\beta }_{j}\leqslant \psi _{j}(.)\leqslant \overline{\beta }_{j}\), \(j\in T_{Y}^{L}\).

References

  • Aghion P (1985) On the generic inefficiency of differentiable market games. J Econ Theory 37:126–146

    Article  Google Scholar 

  • Amir R, Bloch F (2009) Comparative statics in a simple class of strategic market games. Games Econom Behav 65:7–24

    Article  Google Scholar 

  • Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290

    Article  Google Scholar 

  • Arrow KJ, Enthoven AC (1961) Quasi-concave Programming. Econometrica 29:779–800

    Article  Google Scholar 

  • Balasko Y (1975) Some results on uniqueness and on stability of equilibrium in general equilibrium theory. J Math Econ 2:95–118

    Article  Google Scholar 

  • Bloch F, Ferrer H (2001) Trade fragmentation and coordination in strategic market games. J Econ Theory 101:301–316

    Article  Google Scholar 

  • Bloch F, Ghosal S (1997) Stable trading structures in bilateral oligopolies. J Econ Theory 74:368–384

    Article  Google Scholar 

  • Bubelis V (1979) On equilibria in finite games. Int J Game Theory 8:65–79

    Article  Google Scholar 

  • Busetto F, Codognato G (2006) ‘Very nice’ trivial equilibria in strategic market games. J Econ Theory 131:295–301

    Article  Google Scholar 

  • Busetto F, Codognato G, Ghosal S, Julien L, Tonin S (2020a) Existence and optimality of Cournot–Nash equilibrium in a bilateral oligopoly with atoms and an atomless part. Int J Game Theory 49:933–951

    Article  Google Scholar 

  • Busetto F, Codognato, Julien L (2020b) Atomic Leontievian Cournotian traders are always Walrasian. Games Econ Behav 122:318–327

    Article  Google Scholar 

  • Colombo L, Labrecciosa P (2008) When Stackelberg and Cournot equilibria coincide. The B.E. J Theor Econ 8:1–7

    Google Scholar 

  • Cordella T, Gabszewicz JJ (1998) ‘Nice’ trivial equilibria in strategic market games. Games Econ Behav 22:162–169

    Article  Google Scholar 

  • Debreu G (1970) Economies with a finite set of equilibria. Econometrica 38:387–392

    Article  Google Scholar 

  • Dempe S, Zemkoho A (2020) Bilevel Optimization: Advances and Next Challenges. Springer, Berlin

    Book  Google Scholar 

  • Dickson A, Hartley R (2008) The strategic Marshallian cross. Games Econ Behav 64:514–532

    Article  Google Scholar 

  • Dickson A, Tonin S (2021) An introduction to perfect and imperfect competition via bilateral oligopoly. J Econ 133:103–128

    Article  Google Scholar 

  • Dierker E, Grodal B (1999) The price normalization problem in imperfect competition and the objective of the firm. Econ Theor 14:257–84

    Article  Google Scholar 

  • Dubey P (1994) Strategic market games: a survey of some results. In: Mertens JF, Sorin S (eds) Game-theoretic methods in general equilibrium analysis. Kluwer, Amsterdam, pp 209–224

    Chapter  Google Scholar 

  • Dubey P, Shubik M (1978) The non-cooperative equilibria of a closed trading economy with market supply and bidding strategies. J Econ Theory 17:1–20

    Article  Google Scholar 

  • Ehrenmann A (2004) Manifolds of multi-leader Cournot equilibria. Oper Res Lett 32:121–125

    Article  Google Scholar 

  • Gabszewicz JJ, Michel P (1997) Oligopoly equilibria in exchange economies. In: Eaton BC, Harris RG (eds) Trade, technology and economics. Essays in honor of R.G. Lipsey. Edward-Elgar, Cheltenham, pp 217–240

    Google Scholar 

  • Gabszewicz JJ, Vial JP (1972) Oligopoly “A la Cournot’’ in a general equilibrium analysis. J Econ Theory 4:381–400

    Article  Google Scholar 

  • Giraud G (2003) Strategic market games: an introduction. J Math Econ 39:355–375

    Article  Google Scholar 

  • Groh C (1999) Sequential moves and comparative statics in strategic market games. Mimeo (University of Mannheim), New York

    Google Scholar 

  • Hu M, Fukushima M (2011) Variational inequality formulation of a class of multi-leader-follower games. J Optim Theory Appl 15:455–473

    Article  Google Scholar 

  • Jia WS, Xiang SW, He JH, Yang YL (2015) Existence and stability of weakly Pareto-Nash equilibrium for generalized multiobjective multi-leader-follower games. J Global Optim 61:397–405

    Article  Google Scholar 

  • Julien LA (2018) Stackelberg games. In: Corchon LC, Marini MA (eds) Handbook of game theory and industrial organization, vol 1. Edward Elgar, Cheltenham, pp 261–311

    Google Scholar 

  • Kreps D, Wilson R (1982) Sequential equilibria. Econometrica 50:863–894

    Article  Google Scholar 

  • Kulkarni AA, Shanbhag UV (2015) An existence result for hierarchical stackelberg v/s stackelberg games. IEEE Trans Autom Control 60:3379–3384

    Article  Google Scholar 

  • Milnor J (1997) Topology from the differentiable viewpoint, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Selten R (1975) Re-examination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4:25–55

    Article  Google Scholar 

  • Shapley LS, Shubik M (1977) Trade using one commodity as a means of payment. J Polit Econ 85:937–968

    Article  Google Scholar 

  • Sherali A (1984) A multiple leader Stackelberg model and analysis. Oper Res 32:390–405

    Article  Google Scholar 

  • Shubik M (1973) Commodity money, oligopoly, credit and bankruptcy in a general equilibrium model. West Econ J 11:24–38

    Google Scholar 

  • Yu J, Wang HL (2008) An existence theorem for equilibrium points for multi-leader-follower games. Nonlinear Anal 69:1775–1777

    Article  Google Scholar 

Download references

Acknowledgements

A preliminary version entitled “Hierarchical competition and heterogeneous behavior in noncooperative oligopoly markets” (WP EconomiX 2017–2022) was presented at the University of Udine in April 2016, at the University of Strathclyde in November 2016, and at the ASSET Conference in Algiers in October 2017. This version has been presented at the workshop “Strategic interactions and general equilibrium XI” that held at the University of Paris Nanterre in January 2023, and at the EWET Conference in Naples in July 2023. F. Busetto, G. Codognato, S. Comino, A. Dickson, M. Gehrsitz, J. Morgan, F. Prieur, S. Tonin, X. Wang, U. Zenginobuz, and M. Zierhut are acknowledged for their comments and remarks on earlier versions. Two anonymous referees are also gratefully acknowledged for their comments, remarks, and suggestions. Usual disclaimers apply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic A. Julien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: Proof of Proposition 1

Given \((\textbf{q}_{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b} _{\epsilon }^{L},\textbf{b}_{\epsilon }^{F})\in \textbf{S}_{-i}\), the problem for follower i may be written:

$$\begin{aligned} \underset{q_{i,\epsilon }}{\max }\{\pi _{i}^{\epsilon }(q_{i,\epsilon }, \textbf{q}_{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b} _{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}):q_{i,\epsilon }\in {\mathcal {S}}_{i}\}\text {, }\epsilon >0\text {,} \end{aligned}$$
(A1)

where \({\mathcal {S}}_{i}=[0,\alpha _{i}]\) is a nonempty compact convex set, and \(\pi _{i,\epsilon }(.)\) is a continuous function of \((\textbf{q} _{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F};\epsilon )\) as \(\pi _{i,\epsilon }(.)\in \mathcal {C}^{\infty }\). We show that \(\pi _{i,\epsilon }(.)\) is a strictly quasi-concave function of \(q_{i,\epsilon }\). Differentiating (12) with respect to \(q_{i,\epsilon }\) leads to:

$$\begin{aligned} \frac{\partial \pi _{i}^{\epsilon }}{\partial q_{i,\epsilon }}{ =-} \frac{\partial u_{i}}{\partial x_{i}}{ +p}_{X}^{\epsilon }\frac{ Q_{-i,\epsilon }+\epsilon }{q_{i,\epsilon }+Q_{-i,\epsilon }+\epsilon }\frac{ \partial u_{i}}{\partial y_{i}}\text {.} \end{aligned}$$
(A2)

Differentiating (A2) with respect to \(q_{i,\epsilon }\) leads to:

$$\begin{aligned} \frac{\partial ^{2}\pi _{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}} { =-}\frac{1}{\left( \frac{\partial u_{i}}{\partial y_{i}}\right) ^{2}}\left| \bar{\mathcal {H}}_{u_{\textbf{z}_{i}}}\right| { -2p}_{X}^{\epsilon }\frac{Q_{-i,\epsilon }+\epsilon }{(Q_{\epsilon }+\epsilon )^{2}}\frac{\partial u_{i}}{\partial y_{i}}\text {,} \end{aligned}$$
(A3)

where \(\left| \bar{\mathcal {H}}_{u_{\textbf{z}_{i}}}\right| =(\frac{ \partial u_{i}}{\partial y_{i}})^{2}[\frac{\partial ^{2}u_{i}}{(\partial x_{i})^{2}}-2p_{X}^{\epsilon }\frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon }\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}+\left( p_{X}^{\epsilon }\frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon } \right) ^{2}\frac{\partial ^{2}u_{i}}{(\partial y_{i})^{2}}]\) is the determinant of the bordered Hessian matrix of the function \(u_{i}\) at equilibrium, i.e, when \(p_{X}^{\epsilon }\frac{Q_{-i,\epsilon }+\epsilon }{ Q_{\epsilon }+\epsilon }=\frac{\partial u_{i}/\partial x_{i}}{\partial u_{i}/\partial y_{i}}\). As \(\left| \bar{\mathcal {H}}_{u_{\textbf{z} _{i}}}\right| >0\) (Assumption 2c), and the last term in (A3) is negative, then \(\frac{\partial ^{2}{\pi }_{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}}<0\), so \({\pi }_{i}^{\epsilon }(.)\) is strictly concave (then strictly quasi-concave) of \(q_{i,\epsilon }\). But then, the solution to (A1) is unique, so the map \(\phi _{i}^{\epsilon }(\textbf{q} _{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F};\epsilon )\) is point-valued, i.e, a function. As the objective \(\pi _{i,\epsilon }(.)\) is strictly quasi-concave (condition (d) in Arrow and Enthoven 1961 holds), and the constraint set is quasi-convex (as it is convex), the Kuhn-Tucker conditions are sufficient to identify the solution to (A1). Therefore, define the Lagrangian \(\mathcal {L}_{i}^{\epsilon }:\textbf{S}\times {\mathbb {R}} _{+}^{2}\times {\mathbb {R}} _{++}\rightarrow {\mathbb {R}}\) as \(\mathcal {L}_{i}^{\epsilon }(.;\epsilon ):=\pi _{i}^{\epsilon }(q_{i,\epsilon },\textbf{q}_{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F}; \textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F};\epsilon )+\lambda _{i,\epsilon }(\alpha _{i}-q_{i,\epsilon })+\mu _{i,\epsilon }q_{i,\epsilon }\), where \(\lambda _{i,\epsilon }\geqslant 0\) and \(\mu _{i,\epsilon }\geqslant 0\). Then, for all \(\varepsilon >0\), and given \((\textbf{q} _{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F}\mathbf {)\in S}_{-i}\), \(\phi _{i}^{\epsilon }( \textbf{q}_{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F};\textbf{b} _{\epsilon }^{L},\textbf{b}_{\epsilon }^{F};\epsilon )\), is the unique solution to:

$$\begin{aligned} \underset{q_{i,\epsilon }}{\max }\mathcal {L}_{i}^{\epsilon }(.;\epsilon )=u_{i}\left( \alpha _{i}-q_{i,\epsilon },\frac{B_{\epsilon }+\epsilon }{q_{i,\epsilon }+Q_{-i,\epsilon }+\epsilon }q_{i,\epsilon }\right) +\lambda _{i,\epsilon }(\alpha _{i}-q_{i,\epsilon })+\mu _{i,\epsilon }q_{i,\epsilon }\text {.} \end{aligned}$$
(A4)

For all \(\epsilon >0\), by using (A2), the Kuhn-Tucker conditions may be written:

$$\begin{aligned}{} & {} \frac{\partial \mathcal {L}_{i}^{\epsilon }}{\partial q_{i}}=-\frac{\partial u_{i}}{\partial x_{i}}+p_{X}^{\epsilon }\frac{Q_{-i,\epsilon }+\epsilon }{ q_{i,\epsilon }+Q_{-i,\epsilon }+\epsilon }\frac{\partial u_{i}}{\partial y_{i}}-\lambda _{i,\epsilon }+\mu _{i,\epsilon }=0\text {,} \nonumber \\{} & {} \quad \lambda _{i,\epsilon }\geqslant 0\text {, }(\alpha _{i}-q_{i,\epsilon })\geqslant 0\text {, with }\lambda _{i,\epsilon }(\alpha _{i}-q_{i,\epsilon })=0\text {,} \nonumber \\{} & {} \quad \mu _{i,\epsilon }\geqslant 0\text {, }q_{i,\epsilon }\geqslant 0\text {, with }\mu _{i,\epsilon }q_{i,\epsilon }=0\text {.} \end{aligned}$$
(A5)

Therefore, if \(q_{i,\varepsilon }>0\), then \(\mu _{i,\epsilon }=0\), where \(b_{i,\varepsilon }\) is the solution to:

$$\begin{aligned} { -}\frac{\partial u_{i}}{\partial x_{i}}{ +p}_{X}^{\epsilon } \frac{Q_{-i,\epsilon }+\epsilon }{q_{i,\epsilon }+Q_{-i,\epsilon }+\epsilon } \frac{\partial u_{i}}{\partial y_{i}}{ =\lambda }_{i,\epsilon }\text {,} \end{aligned}$$
(A6)

which yields \(\phi _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q} _{-i,\epsilon }^{F};\textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F};\epsilon )>0\). In addition, if \(\lambda _{i,\epsilon }>0\), then \(q_{i,\epsilon }=\phi _{i}^{\epsilon }({.})=\alpha _{i}\), while if \(\lambda _{i,\epsilon }=0\), then \(\phi _{i}^{\epsilon }({.})\in (0,\alpha _{i})\). Now, if \(\mu _{i,\epsilon }>0\), then \(q_{i,\varepsilon }=0\), which means that \(\phi _{i}^{\epsilon }({.})=0\) and \(\lambda _{i,\epsilon }=0\) since \(q_{i,\varepsilon }<\alpha _{i}\). Therefore, either \(\phi _{i}^{\epsilon }(.)>0\) when \(q_{i,\epsilon }\in (0,\alpha _{i}]\) or \(\ \phi _{i}^{\epsilon }({.})=0\). Then, \(\phi _{i}^{\epsilon }({.})\geqslant 0\). In each case there exists a unique solution to (A1): either \(\phi _{i}^{\epsilon }({.})\in \{0,\alpha _{i}\}\) or \(\phi _{i}^{\epsilon }({.})\in (0,\alpha _{i})\), \(i\in T_{X}^{F}\).

Finally, we show \(\phi _{i}^{\epsilon }({.})\in \mathcal {C}^{\infty }\) . The equation \(\frac{\partial \mathcal {L}_{i}^{\epsilon }}{\partial q_{i}} =0\) in (A5) defines implicitly \(\phi _{i}^{\epsilon }({.})\). As \({\pi }_{i}^{\epsilon }(.)\in \mathcal {C}^{\infty }\) and \(\frac{ \partial ^{2}{\pi }_{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}} \ne 0\), by the Implicit Function Theorem, \(\phi _{i}^{\epsilon }({.} )\in \mathcal {C}^{\infty }\).

A similar reasoning holds for \(\psi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{L},\textbf{b} _{-j,\epsilon }^{F};\epsilon )\), \(j\in T_{Y}^{F}\).\(\blacksquare\)

1.2 Appendix B: Proof of Proposition 2

Let \((\bar{\textbf{q}};\bar{\textbf{b}})=(\bar{\textbf{q}}_{\epsilon }^{L},\bar{\textbf{q}}_{\epsilon }^{F}(\bar{\textbf{q}}_{\epsilon }^{L};\bar{\textbf{b}} _{\epsilon }^{L});\bar{\textbf{b}}_{\epsilon }^{L},\bar{\textbf{b}} _{\epsilon }^{F}(\bar{\textbf{q}}_{\epsilon }^{L};\bar{\textbf{b}}_{\epsilon }^{L}))\in \textbf{S}\). First: \(\mathcal {J}_{\varvec{\phi }_{\textbf{q} _{\epsilon }^{F}}^{\epsilon }}(\bar{\textbf{q}};\bar{\textbf{b}})\in (-\mathbf {I,I)}\) , where \(\textbf{I}\) is the \((n_{X}-m_{X},n_{X}-m_{X})\) unit matrix. \(\mathcal {J}_{\varvec{\phi }_{\textbf{q}_{\epsilon }^{F}}^{\epsilon }}( \bar{\textbf{q}};\bar{\textbf{b}})\) has unit terms on its main diagonal. To study the partial effects of a change in the supplies of other followers, i.e., \(q_{-i,\epsilon }\), \(-i\ne i\), \(-i\in T_{X}^{F}\), and \(b_{j,\epsilon }\), \(j\in T_{Y}^{F}\), consider the identity:

$$\begin{aligned} \frac{\partial \pi _{i}^{\epsilon }}{\partial q_{i,\epsilon }}(\textbf{q} _{\epsilon }^{L},\phi _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q} _{{ -i},\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L},\textbf{b} _{\epsilon }^{F}(.);\epsilon ),\varvec{\phi }_{-i}^{\epsilon }(.);\textbf{b} _{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(.);\epsilon )\equiv 0\text {,} \end{aligned}$$
(B1)

where, for \(i\in T_{X}^{F}\), \(\phi _{i}^{\epsilon }(.)\) is the solution to (A2). Implicit partial differentiation of (B1) with respect to \(q_{-i,\epsilon }\), for \(-i\ne i\), leads to \(\frac{\partial \phi _{i}^{\epsilon }(.)}{\partial q_{-i,\epsilon }}=-\frac{\frac{\partial ^{2}\pi _{i}^{\epsilon }}{\partial q_{i,\epsilon }\partial q_{-i,\epsilon }}}{\frac{\partial ^{2}\pi _{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}}}\), so we deduce:

$$\begin{aligned} \frac{\partial \phi _{i}^{\epsilon }(.)}{\partial q_{-i,\epsilon }}=\frac{ p_{X}^{\epsilon }\left( \frac{q_{i,\epsilon }}{Q_{\epsilon }+\epsilon }\frac{ \partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}+\frac{q_{i,\epsilon }-(Q_{-i,\epsilon }+\epsilon )}{(Q_{\epsilon }+\epsilon )^{2}}\frac{\partial u_{i}}{\partial y_{i}}-p_{X}^{\epsilon }\frac{(Q_{-i,\epsilon }+\epsilon )q_{i,\epsilon }}{(Q_{\epsilon }+\epsilon )^{2}}\frac{\partial ^{2}u_{i}}{ (\partial y_{i})^{2}}\right) }{\frac{\partial ^{2}u_{i}}{(\partial x_{i})^{2}} -p_{X}^{\epsilon }\left( 2\frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon }\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}-p_{X}^{\epsilon }\left( \frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon }\right) ^{2}\frac{ \partial ^{2}u_{i}}{(\partial y_{i})^{2}}+2\frac{Q_{-i,\epsilon }+\epsilon }{ (Q_{\epsilon }+\epsilon )^{2}}\frac{\partial u_{i}}{\partial y_{i}}\right) }\text {.} \end{aligned}$$
(B2)

Assume, without loss of generality, that, for at least one leader i or one follower \(i^{\prime }\) we have \(\tilde{q}_{i,\epsilon }\leqslant \frac{ \tilde{Q}_{\epsilon }}{2}\) or \(\tilde{q}_{i^{\prime },\epsilon }\leqslant \frac{\tilde{Q}_{\epsilon }}{2}\) (otherwise \(\tilde{q}_{i,\epsilon }+\) \(\tilde{q}_{i^{\prime },\epsilon }>\tilde{Q}_{\epsilon }\)). As \(\left| \frac{(Q_{-i,\epsilon }+\epsilon )q_{i,\epsilon }}{(Q_{\epsilon }+\epsilon )^{2}}\right| <\left| \left( \frac{Q_{-i,\epsilon }+\epsilon }{ Q_{\epsilon }+\epsilon }\right) ^{2}\right|\), \(2\frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon }>\frac{q_{i,\epsilon }}{Q_{\epsilon }+\epsilon }\), and \(\frac{q_{i,\epsilon }-(Q_{-i,\epsilon }+\epsilon )}{ (Q_{\epsilon }+\epsilon )^{2}}<2\frac{Q_{-i,\epsilon }+\epsilon }{ (Q_{\epsilon }+\epsilon )^{2}}\), then \(\left| \frac{\partial \phi _{i}^{\epsilon }(.)}{\partial q_{-i,\epsilon }}\right| <1\).

Second: \(\mathcal {J}_{\varvec{\phi }_{\textbf{b}_{\epsilon }^{F}}^{\epsilon }}(\bar{\textbf{q}};\bar{\textbf{b}})\in (-\mathbf {I,I)}\). Implicit partial differentiation of (B1) with respect to \(b_{j,\epsilon }\), \(j\in T_{Y}^{F}\) , leads to:

$$\begin{aligned} \frac{\partial \phi _{i}^{\epsilon }(.)}{\partial b_{j,\epsilon }}=\frac{ \frac{q_{i,\epsilon }}{Q_{\epsilon }+\epsilon }\frac{\partial ^{2}u_{i}}{ (\partial x_{i})^{2}}-\frac{Q_{-i,\epsilon }+\epsilon }{(Q_{\epsilon }+\epsilon )^{2}}\frac{\partial u_{i}}{\partial y_{i}}-p_{X}^{\epsilon } \frac{(Q_{-i,\epsilon }+\epsilon )q_{i,\epsilon }}{(Q_{\epsilon }+\epsilon )^{2}}\frac{\partial ^{2}u_{i}}{(\partial y_{i})^{2}}}{\frac{\partial ^{2}u_{i}}{(\partial x_{i})^{2}}-p_{X}^{\epsilon }\left( 2\frac{Q_{-i,\epsilon }+\epsilon }{Q_{\epsilon }+\epsilon }\frac{\partial ^{2}u_{i}}{\partial x_{i}\partial y_{i}}-p_{X}^{\epsilon }\left( \frac{Q_{-i,\epsilon }+\epsilon }{ Q_{\epsilon }+\epsilon }\right) ^{2}\frac{\partial ^{2}u_{i}}{(\partial y_{i})^{2}} +2\frac{Q_{-i,\epsilon }+\epsilon }{(Q_{\epsilon }+\epsilon )^{2}}\frac{ \partial u_{i}}{\partial y_{i}}\right) }\text {.} \end{aligned}$$
(B3)

A similar reasoning leads to \(\left| \frac{\partial \phi _{i}^{\epsilon }(.)}{\partial b_{j,\epsilon }}\right| <1\), for \(i\in T_{X}^{F}\), and \(j\in T_{Y}^{F}\).\(\blacksquare\)

1.3 Appendix C: Proof of Lemma 1

Define the function \(\Phi _{i}^{\epsilon }:\textbf{S}\times {\mathbb {R}} _{++}\rightarrow {\mathcal {S}}_{i}\), with \(\Phi _{i}^{\epsilon }(\textbf{q} _{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F}(.);\epsilon ):=q_{i,\epsilon }(.)-\phi _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q}_{-i,\epsilon }^{F}(.),;\textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(.);\epsilon )\), \(i\in T_{X}^{F}\), and the function \(\Psi _{j}^{\epsilon }: \textbf{S}\times {\mathbb {R}} _{++}\rightarrow {\mathcal {S}}_{j}\), with \(\Psi _{j}^{\epsilon }(\textbf{q} _{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F}(.);\epsilon ):=b_{j,\epsilon }(.)-\psi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.); \textbf{b}_{\epsilon }^{L},\textbf{b}_{-j,\epsilon }^{F}(.);\epsilon \mathbf { )}\), \(j\in T_{Y}^{F}\). As for each \(i\in T_{X}^{F}\), \(\phi _{i}^{\epsilon }(.)\in \mathcal {C}^{\infty }(.)\), then \(\Phi _{i}^{\epsilon }(.)\in \mathcal {C}^{\infty }\), \(i\in T_{X}^{F}\). Likewise, \(\Psi _{j}^{\epsilon }(.)\in \mathcal {C}^{\infty }\), \(j\in T_{Y}^{F}\). For all \(\epsilon >0\), consider the system of equations for \({\varvec{\Gamma }}^{\epsilon }\):

$$\begin{aligned} \left\{ \begin{array}{c} \Phi _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(.);\epsilon )=0\text {, }i\in T_{X}^{F}\text {,} \\ \\ \Psi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(.);\epsilon )=0\text {, }j\in T_{Y}^{F}\text {.} \end{array} \right. \end{aligned}$$
(C1)

Define the \((n_{X}-m_{X}+n_{Y}-m_{Y})\)-dimensional vector function \({\varvec{\Upsilon }}^{\epsilon }:\textbf{S}\times {\mathbb {R}} _{++}\rightarrow \textbf{S}^{F}\), \({{\varvec{\Upsilon }}}^{\epsilon }(\textbf{q} _{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L}, \textbf{b}_{\epsilon }^{F}(.);\epsilon )=(\Phi _{m_{X}+1}^{\epsilon }( {.};\epsilon ),\ldots ,\Phi _{n_{X}}^{\epsilon }({.};\epsilon );\Psi _{m_{Y}+1}^{\epsilon }({.};\epsilon ),\ldots ,\Psi _{n_{Y}}^{\epsilon }({.};\epsilon ))\). Then, (C1) may be written as a \((n_{X}-m_{X}+n_{Y}-m_{Y})\)-dimensional vector equation:

$$\begin{aligned} {{\varvec{\Upsilon }}}^{\epsilon }(\textbf{q}_{\epsilon }^{L},\textbf{q} _{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(.);\epsilon )=\textbf{0}\text {.} \end{aligned}$$
(C2)

Consider the restriction of \(\textbf{S}\times {\mathbb {R}} _{++}\) to the open set \(\bar{\textbf{S}}\times {\mathbb {R}} _{++}\), with \(\bar{{\mathcal {S}}}_{i}\subset {\mathcal {S}}_{i}\), \(i\in T_{X}\), and \(\bar{{\mathcal {S}}}_{j}\subset {\mathcal {S}}_{j}\), \(j\in T_{Y}\). The vector function \({{\varvec{\Upsilon }}}^{\epsilon }(\textbf{q}_{\epsilon }^{L}, \textbf{q}_{\epsilon }^{F}(.);\textbf{b}_{\epsilon }^{L},\textbf{b} _{\epsilon }^{F}(.);\epsilon )\) is \(\mathcal {C}^{\infty }\) on the open set \(\bar{\textbf{S}}\times {\mathbb {R}} _{++}\) as each \(\Phi _{i}^{\epsilon }\) and each \(\Psi _{j}^{\epsilon }\) are \(\mathcal {C}^{\infty }\) functions of \((\textbf{q}_{\epsilon }^{L};\textbf{b} _{\epsilon }^{L})\) on the open set \(\bar{\textbf{S}}\times {\mathbb {R}} _{++}\). Let \((\bar{\textbf{q}};\bar{\textbf{b}})=(\bar{\textbf{q}}_{\epsilon }^{L}, \bar{\textbf{q}}_{\epsilon }^{F}(\bar{\textbf{q}}_{\epsilon }^{L};\bar{\textbf{b}}_{\epsilon }^{L});\bar{\textbf{b}}_{\epsilon }^{L},\bar{\textbf{b}} _{\epsilon }^{F}(\bar{\textbf{q}}_{\epsilon }^{L};\bar{\textbf{b}}_{\epsilon }^{L}))\) be an interior point of \(\textbf{S}\), where \((\bar{\textbf{q}} _{\epsilon }^{L};\bar{\textbf{b}}_{\epsilon }^{L})\) corresponds to a parameter configuration. Therefore, the following identity, which defines implicitly the strategies \(\textbf{q}_{\epsilon }^{L}:={{\varvec{\sigma }}} ^{\epsilon }(.)\) and \(\textbf{b}_{\epsilon }^{L}:={{\varvec{\varphi }}} ^{\epsilon }(.)\), holds in an open neighborhood of \((\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\):

$$\begin{aligned} {{\varvec{\Upsilon }}}^{\epsilon }(\textbf{q}_{\epsilon }^{L}, {{\varvec{\sigma }}}^{\epsilon }(\textbf{b }_{\epsilon }^{L};\textbf{q}_{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{L},{{\varvec{\varphi }}}^{\epsilon }(\textbf{b}_{\epsilon }^{L};\textbf{q} _{\epsilon }^{L};\epsilon ))\equiv \textbf{0}\text {.} \end{aligned}$$
(C3)

We now show that there exists a product of open sets \(\mathcal {U}\times \mathcal{V}\) in \(\bar{\textbf{S}}\) and a product neighborhood \((\mathcal {U}_{L} \times \mathcal { V}_{L})\) in \(\prod \nolimits _{i\in T_{X}^{L}} \bar{{\mathcal {S}}}_{i}\times \prod \nolimits _{j\in T_{Y}^{L}}\bar{{\mathcal {S}}} _{j}\), with \((\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}}_{\epsilon })\subseteq\) \(\mathcal {U}\times \mathcal{V}\) and \((\textbf{q}_{\epsilon }^{L};\textbf{ b}_{\epsilon }^{L})\subseteq (\mathcal {U}_{L}\times \mathcal { V}_{L})\) such that for each \((\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L})\) in \((\mathcal {U}_{L}\times \mathcal { V}_{L})\), there exists (at least locally) one unique \((n_{X}-m_{X}+n_{Y}-m_{Y})\) dimensional \(\mathcal {C}^{\infty }\) vector function \(( {{\varvec{\sigma }}}^{\epsilon }(\textbf{q }_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );{{\varvec{\varphi }}} ^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon ))=[{{\varvec{\Upsilon }}}^{\epsilon }\mathbf {]}^{-1}(\textbf{0})\) in some neighborhood of \((\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L})\) such that \((\textbf{q}_{\epsilon }^{L}, {{\varvec{\sigma }}}^{\epsilon }({.});\textbf{b} _{\epsilon }^{L}, {\varvec{\varphi }}^{\epsilon }({.}))\in\) \(\mathcal {U}\times \mathcal{V}\) and (C3) holds. Implicit partial differentiation with respect to each component of \(( \bar{\textbf{q}}_{\epsilon }^{L};\bar{\textbf{b}}_{\epsilon }^{L})\) yields:

$$\begin{aligned} \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b} _{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}} _{\epsilon }).\mathcal {A}^{\epsilon }+\mathcal {B}^{\epsilon }=\textbf{0} \text {, for each }\epsilon >0\text {,} \end{aligned}$$
(C4)

where:

$$\begin{aligned} \mathcal { J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b} _{\epsilon }^{F})}^{\epsilon }}{ (}\bar{\textbf{q}}_{\epsilon }{ ;}\bar{\textbf{b}}_{\epsilon }{ )=}\left[ \begin{array}{cccccc} 1 &{} \cdots &{} \frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{n_{X},\epsilon }} &{} \frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial b_{m_{Y}+1,\epsilon }} &{} \cdots &{} \frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{ \partial b_{n_{Y},\epsilon }} \\ \vdots &{} \ddots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ \frac{\partial \Phi _{n_{X}}^{\epsilon }}{\partial q_{m_{X}+1,\epsilon }} &{} \cdots &{} 1 &{} \frac{\partial \Phi _{n_{X}}^{\epsilon }}{\partial b_{m_{Y}+1,\epsilon }} &{} \cdots &{} \frac{\partial \Phi _{n_{X}}^{\epsilon }}{ \partial b_{n_{Y},\epsilon }} \\ \frac{\partial \Psi _{m_{Y}+1}^{\epsilon }}{\partial q_{m_{X}+1,\epsilon }} &{} \cdots &{} \frac{\partial \Psi _{m_{Y}+1}^{\epsilon }}{\partial q_{n_{X},\epsilon }} &{} 1 &{} \cdots &{} \frac{\partial \Psi _{m_{Y}+1}^{\epsilon }}{ \partial b_{n_{Y},\epsilon }} \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ \frac{\partial \Psi _{n_{Y}}^{\epsilon }}{\partial q_{m_{X}+1,\epsilon }} &{} \cdots &{} \frac{\partial \Psi _{n_{Y}}^{\epsilon }}{\partial q_{n_{X,\epsilon }}} &{} \frac{\partial \Psi _{n_{Y}}^{\epsilon }}{\partial b_{m_{Y}+1,\epsilon }} &{} \cdots &{} 1 \end{array} \right] \end{aligned}$$
(C5)

is an \((n_{X}-m_{X}+n_{Y}-m_{Y},n_{X}-m_{X}+n_{Y}-m_{Y})\) matrix, and the matrices \(\mathcal {A}^{\epsilon }=[\frac{\partial (q_{m_{X}+1,\epsilon },\ldots ,q_{n_{X},\epsilon },b_{m_{X}+1,\epsilon },\ldots ,b_{n_{Y},\epsilon } )}{\partial (q_{1,\epsilon },\ldots ,q_{m_{X},\epsilon },b_{1,\epsilon },\ldots ,b_{m_{Y},\epsilon })}(\bar{\textbf{q}};\bar{\textbf{b}})]\), \(\mathcal {B} ^{\epsilon }=[\frac{\partial (\Phi _{m_{X}+1,\epsilon }^{\epsilon },\ldots ,\Phi _{n_{X},\epsilon }^{\epsilon },\Psi _{m_{Y}+1}^{\epsilon },\ldots ,\Psi _{n_{Y}}^{\epsilon })}{\partial (q_{1,\epsilon },\ldots ,q_{m_{X},\epsilon },b_{1,\epsilon },\ldots ,b_{m_{Y},\epsilon })}(\bar{\textbf{q}};\bar{\textbf{b}})]\) are of dimension \((n_{X}-m_{X}+n_{Y}-m_{Y},m_{X}+m_{Y})\).

The square matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon } ;\bar{\textbf{b}}_{\epsilon })\) has unit terms on the main diagonal and each off-diagonal term is bounded below by \(-1\) and above by 1, as from Proposition 2, we have \(-\textbf{I}<<\mathcal {J}_{\varvec{\phi }_{(\textbf{q} _{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}<<\textbf{I}\) and \(-\textbf{I}<<\mathcal {J}_{\varvec{\psi }_{(\textbf{q}_{\epsilon }^{F}; \textbf{b}_{\epsilon }^{F})}^{\epsilon }}<<\textbf{I}\). Then, \(\frac{ \partial \Phi _{i}^{\epsilon }(.)}{\partial q_{-i,\epsilon }}=-\frac{ \partial \phi _{i}^{\epsilon }(.)}{\partial q_{-i,\epsilon }}\in (-1,1)\), with \(-i\ne i\), and \(\left| \frac{\partial \Phi _{i}^{\epsilon }(.)}{ \partial b_{j,\epsilon }}\right| =\left| -\frac{\partial \phi _{i}^{\epsilon }(.)}{\partial b_{j,\epsilon }}\right| <1\), \(i\in T_{Y}^{F}\); and \(\frac{\partial \Psi _{j}^{\epsilon }(.)}{\partial b_{-j,\epsilon }}=-\frac{\partial \psi _{j}^{\epsilon }(.)}{\partial b_{-j,\epsilon }}\in (-1,1)\), with \(-j\ne j\), and \(\left| \frac{ \partial \Psi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\right| =\left| -\frac{\partial \psi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\right| <1\), \(j\in T_{Y}^{F}\). The signs of the off diagonal terms depend on whether the strategies of followers are complements or substitutes. But, in any case, for all \(\epsilon >0\), the rows of the matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\varepsilon }^{F}; \textbf{b}_{\varepsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\varepsilon }; \bar{\textbf{b}}_{\varepsilon })\) are linearly independent, so this matrix is of full rank, and then invertible, i.e., for all \(\epsilon >0\),\(\ \left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F}; \textbf{b}_{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}};\bar{\textbf{b}} )\right| \ne 0\). Then, by the Implicit Function Theorem, there exist open sets \(\mathcal {U}\times \mathcal{V}\) in \(\bar{\textbf{S}}\) and \(\mathcal {U}_{L} \times \mathcal { V}_{L}\) in \(\prod \nolimits _{i\in T_{X}^{L}}\bar{{\mathcal {S}}} _{i}\times \prod \nolimits _{j\in T_{Y}^{L}}\bar{\mathcal {azS}}_{j}\), with \(( \bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}}_{\epsilon })\subseteq\) \(\mathcal {U}\times \mathcal{V}\) and \((\textbf{q}_{\epsilon }^{L};\textbf{b} _{\epsilon }^{L})\subseteq (\mathcal {U}_{L}\times \mathcal { V}_{L}\mathcal {)}\) such that for each \((\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L})\) in \(\mathcal {U}_{L}\times \mathcal { V}_{L}\), there exists a locally unique \((n_{X}-m_{X}+n_{Y}-m_{Y})\) dimensional vector function \(( \textbf{q}_{\epsilon }^{F}(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{F}( \textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon ))\) in some neighborhood of \((\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L})\) such that \((\textbf{q}_{\epsilon }^{L},\textbf{q}_{\epsilon }^{F}(\textbf{q} _{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{L}, \textbf{b} _{\epsilon }^{F}(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon ))\in\) \(\mathcal {U}\times \mathcal{V}\), and the identity (C3) holds. Indeed, the unique solution \(( {{\varvec{\sigma }}} ^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );{{\varvec{\varphi }}}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b} _{\epsilon }^{L};\epsilon ))\) to \((\textbf{q}_{\epsilon }^{F}(\textbf{q} _{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{F}(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon ))=[ {{\varvec{\Upsilon }}}^{\epsilon }\mathbf {]}^{-1}(\textbf{0})\) is defined by \({{\varvec{\sigma }}}^{\epsilon }:{\mathcal {S}}^{L}\times {\mathbb {R}} _{++}\supset\) \(\mathcal {U}_{L}\times \mathcal { V}_{L}\rightarrow \prod \nolimits _{i\in T_{X}^{F}}{\mathcal {S}}_{i}\), with \(\textbf{q}_{\epsilon }^{F}={{\varvec{\sigma }}}^{\epsilon }(\textbf{ q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\), and by \({\varvec{{\varphi }}}^{\epsilon }:{\mathcal {S}}^{L}\times {\mathbb {R}} _{++}\supset\) \(\mathcal {U}_{L}\times \mathcal { V}_{L}\rightarrow \mathop {\textstyle \prod }\nolimits _{j\in T_{Y}^{F}}{\mathcal {S}}_{j}\), with \(\textbf{b}_{\epsilon }^{F}={{\varvec{\varphi }}}^{\epsilon }( \textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\). For all \(\epsilon >0\), each component function \(\sigma _{i}^{\epsilon }({.})\) is defined as \(\sigma _{i}^{\epsilon }: {\mathcal {S}}^{L}\times {\mathbb {R}} _{++}\supset \mathcal {U}_{L}\times \mathcal { V}_{L}\rightarrow {\mathcal {S}} _{i}\), with \(q_{i,\epsilon }= \sigma _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\), \(i\in T_{X}^{F}\). The same holds for \(\varphi _{j}^{\epsilon }:{\mathcal {S}}^{L}\times {\mathbb {R}} _{++}\supset \mathcal {U}_{L}\times \mathcal { V}_{L}\), with \(b_{j,\epsilon }= \varphi _{j}^{\epsilon }(\textbf{q} _{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\) \(j\in T_{Y}^{F}\). Finally, for all \(\epsilon >0\), \(\ \sigma _{i}^{\epsilon }(\textbf{q} _{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\in \mathcal {C} ^{\infty }(\textbf{S},{\mathcal {S}}_{i})\), \(i\in T_{X}^{F}\), and \(\varphi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )\in \mathcal {C}^{\infty }(\textbf{S},{\mathcal {S}}_{j})\), \(j\in T_{Y}^{F}\). \(\square\)

1.4 Appendix D: Proof of Proposition 3

Let \((\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}}_{\epsilon })\) in \(\textbf{S}\). We show \(-1\leqslant \frac{\partial \sigma _{i}^{\epsilon } \mathbf {(q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )}{ \partial q_{i,\epsilon }}<1\), \(i\in T_{X}^{F}\), and, \(\frac{\partial \varphi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\geqslant 0\), \(j\in T_{Y}^{F}\) . First, we show \(-1\leqslant \frac{\partial \sigma _{i}^{\epsilon }(.)}{ \partial q_{i,\epsilon }}<1\). Consider (9). From Cramer’s rule:

$$\begin{aligned} \frac{\partial q_{m_{X}+1,\epsilon }}{\partial q_{1,\epsilon }}{ =-} \frac{\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\right| }{\left| \mathcal {J }_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}}_{\epsilon })\right| }\text {,} \end{aligned}$$
(D1)

where \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{b}_{\epsilon }^{F};\textbf{q }_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}}_{\epsilon } ;\bar{\textbf{b}}_{\epsilon })\) is the \((n_{X}-m_{X}+n_{Y}-m_{Y},n_{X}-m_{X}+n_{Y}-m_{Y})\) square matrix obtained by replacing the first column in \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{b }_{\epsilon }^{F};\textbf{q}_{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\) by the first column of \(\mathcal { B}^{\epsilon }\). (D1) is well-defined, as from Lemma 1, \(\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}\right| \ne 0\). Let \(\frac{\partial \Phi _{i}^{\epsilon }}{\partial q_{1,\epsilon }}=0\), \(i\in T_{X}^{F}\), and \(\frac{\partial \Psi _{j}^{\epsilon }}{\partial q_{1,\epsilon }}=0\), \(j\in T_{Y}^{F}\), in \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F}; \textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\). The matrices \(\mathcal {J}_{ {{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\textbf{q;b})\) and \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}(\textbf{q;b})\) have common terms: the off-diagonal terms of the matrix \(\mathcal {B}^{\epsilon }\) coincide with the off-diagonal terms of the matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}\) as \(Q\equiv \sum \nolimits _{i\in T_{1}}q_{i}\) and \(B\equiv \sum \nolimits _{j\in T_{2}}b_{j}\). If \(\frac{\partial q_{m_{X}+1,\epsilon }}{\partial q_{1,\epsilon }}<-1\), then

$$\begin{aligned} \left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F}; \textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\right| { >}\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b} _{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}} _{\epsilon })\right| \text {.} \end{aligned}$$
(D2)

Expansion by cofactors of the both sides of (D3), and cancellation among common terms on both sides, lead to:

$$\begin{aligned} \frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }} \left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F}; \textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\right| { >}\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b} _{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}} _{\epsilon })\right| \text {,} \end{aligned}$$
(D3)

where \(\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}} _{\epsilon };\bar{\textbf{b}}_{\epsilon })\right|\) stands for the principal minor of order \((n_{X}-m_{X}+n_{Y}-m_{Y}-1).(1,1)\) of \(\mathcal {J} _{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}} _{\epsilon })\). From (D3), we have \(\frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }}>1\). A contradiction as \(\frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }}<-1\). Then, we have \(-\frac{\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q} _{\epsilon }^{F};\textbf{b}_{\epsilon }^{F})}^{\epsilon }}^{\prime }(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}}_{\epsilon })\right| }{\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{(\textbf{q}_{\epsilon }^{F};\textbf{b} _{\epsilon }^{F})}^{\epsilon }}(\bar{\textbf{q}}_{\epsilon };\bar{\textbf{b}} _{\epsilon })\right| }\leqslant 1\), so \(\frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }}\geqslant -1\). Next, if \(\frac{\partial q_{m_{X}+1,\epsilon }}{\partial q_{1,\epsilon }}>1\), then \(\frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }}<-1\). A contradiction. Then, \(\frac{\partial \Phi _{m_{X}+1}^{\epsilon }}{\partial q_{1,\epsilon }}<1\). As the same holds for all best responses, and for \(i\in T_{X}^{L}\), then

$$\begin{aligned} { -}\textbf{I}\le \frac{\partial [\sigma _{m_{X}+1}^{\epsilon } \mathbf {(b}_{\epsilon }^{L};\textbf{q}_{\epsilon }^{L};\epsilon \mathbf { ),\ldots ,}\sigma _{n_{X}}^{\epsilon }{(\textbf{b}_{{\varvec{\epsilon }} }^{\textbf{L}}; \textbf{q}_{{\varvec{\epsilon }} }^{\textbf{L}};{\varvec{\epsilon }})]}}{\partial [q_{1,\epsilon },\ldots ,q_{m_{X},\epsilon }]}<<\textbf{I}\text {,} \end{aligned}$$
(D4)

where \(\textbf{I}\) is the \((n_{X}-m_{X},m_{X})\) unit matrix.

Now, we show \(\frac{\partial \varphi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\geqslant 0\), \(j\in T_{Y}^{F}\), \(i\in T_{X}^{L}\). Assume \(\frac{\partial \varphi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}<0\) (strategies are substitutes so goods are complements). Then, u(.) is not differentiable, which contradicts Assumption 2a. Then, the conclusion follows.\(\blacksquare\)

1.5 Appendix E: Proof of Proposition 4

Let the reduced form payoff of leader \(i\in T_{X}^{L}\) be given by \(\pi _{i}^{\epsilon }(q_{i,\epsilon },\textbf{q}_{-i,\epsilon }^{L},.;\textbf{b} _{\epsilon }^{L},.;\epsilon )\equiv \pi _{i}^{\epsilon }(q_{i,\epsilon }, \textbf{q}_{-i,\epsilon }^{L}, {{\varvec{\sigma }}} ^{\epsilon }(q_{i,\epsilon },\textbf{q}_{-i,\epsilon }^{L};\textbf{b} _{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{L},{{\varvec{\varphi }}} ^{\epsilon }(q_{i,\epsilon },\textbf{q}_{-i,\epsilon }^{L};\textbf{b} _{\epsilon }^{L};\epsilon ))\). For all \((\textbf{q}_{-i,\epsilon }^{L}; \textbf{b}_{\epsilon }^{L})\), the problem of leader i may be written:

$$\begin{aligned} \underset{q_{i,\epsilon }}{\max }\{\pi _{i}^{\epsilon }(q_{i,\epsilon },\textbf{q}_{-i,\epsilon }^{L},.;\textbf{b} _{\epsilon }^{L},.;\epsilon ):q_{i,\epsilon }\in {\mathcal {S}}_{i}\}\text {, } \epsilon >0\text {,} \end{aligned}$$
(E1)

The set \({\mathcal {S}}_{i}=[0,\alpha _{i}]\) is nonempty, compact and convex. As \(u_{i}(.)\in \mathcal {C}^{\infty }\), \({{\varvec{\sigma }}}^{\epsilon }(.)\in \mathcal {C}^{\infty }\), and \({{\varvec{\varphi }}} ^{\epsilon }(.)\in \mathcal {C}^{\infty }\), \(\pi _{i}^{\epsilon }(.) \in \mathcal {C}^{\infty }\), so \(\pi _{i}^{\epsilon }(.)\) is a continuous function of \((q_{i,\epsilon },\textbf{q}_{-i,\epsilon };\textbf{b}_{\epsilon };\epsilon )\). Then, there exists \(q_{i,\epsilon }=\phi _{i}^{\epsilon }(\textbf{q} _{-i}^{L};\textbf{b}^{L};\epsilon )\). To prove uniqueness, we show \(\pi _{i}^{\epsilon }(.)\) is a strictly quasi-concave function of \(q_{i,\epsilon }\). Differentiating (10) with respect to \(q_{i,\epsilon }\), and using \({{\varvec{\sigma }}}^{\epsilon }(.)\) and \({{\varvec{\varphi }}}^{\epsilon }(.)\), yield:

$$\begin{aligned} \frac{\partial \pi _{i}^{\epsilon }}{\partial q_{i,\epsilon }}{ =-} \frac{\partial u_{i}}{\partial x_{i}}{ +\chi p}_{X}^{\epsilon }\frac{ \partial u_{i}}{\partial y_{i}}\text {,} \end{aligned}$$
(E2)

where \(\chi \equiv 1-(1+\nu _{i,\epsilon }^{X})\frac{q_{i,\epsilon }}{ Q_{\epsilon }+\epsilon }+\eta _{i,\epsilon }^{X}\frac{q_{i,\epsilon }}{ B_{\epsilon }+\epsilon }\), \(\nu _{i,\epsilon }^{X}=\frac{\partial \sum \nolimits _{i}\sigma _{i}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\), \(\eta _{i,\epsilon }^{X}=\frac{\partial \sum \nolimits _{j}\varphi _{j}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\), and \(p_{X}^{\epsilon }\overset{\vartriangle }{=}\) \(p_{X}(\textbf{q}_{\epsilon }^{L},{{\varvec{\sigma }}}^{\epsilon } (\textbf{q} _{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon );\textbf{b}_{\epsilon }^{L},{{\varvec{\varphi }}}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b} _{\epsilon }^{L};\epsilon ))\). By construction \(\nu _{i,\epsilon }^{X}=\nu _{\epsilon }^{X}\), and \(\eta _{i,\epsilon }^{X}=\eta _{\epsilon }^{X}\), with \(\nu _{\epsilon }^{X}\in [-1,1)\) and \(\eta _{\epsilon }^{X}\geqslant 0\) (from 2a.). Indeed, as \(\chi \in [0,1]\), then \(0\leqslant -(1+\nu _{\epsilon }^{X})\frac{q_{i,\epsilon }}{\textbf{Q}_{\epsilon }+\epsilon } +\eta _{\epsilon }^{X}\frac{q_{i,\epsilon }}{\textbf{B}_{\epsilon }+\epsilon }\leqslant 1\), which leads to \(\frac{\eta _{\epsilon }^{X}}{2-\nu _{\epsilon }^{X}}\leqslant \frac{\textbf{B}_{\epsilon }+\epsilon }{\textbf{Q}_{\epsilon }+\epsilon }\leqslant \frac{\eta _{\epsilon }^{X}}{1+\nu _{\epsilon }^{X}}\). Then, \(\nu _{\epsilon }^{X}\leqslant \frac{1}{2}\). And, from Proposition 3, we get \(\nu _{\epsilon }^{X}\geqslant -1\) as \(\frac{\partial \sigma _{i}^{\epsilon }(.)}{\partial q_{i,\epsilon }}\geqslant -1\). Next, by differentiating partially (E2) with respect to \(q_{i,\epsilon }\) leads to:

$$\begin{aligned} \frac{\partial ^{2}\pi _{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}} { =}\frac{\partial ^{2}u_{i}}{(\partial x_{i})^{2}}{ -2\chi p} _{X}^{\epsilon }\frac{\partial u_{i}}{\partial x_{i}\partial y_{i}}{ +(\chi p}_{X}^{\epsilon }{ )}^{2}\frac{\partial ^{2}u_{i}}{(\partial y_{i})^{2}}{ -\kappa }\frac{\partial u_{i}}{\partial y_{i}}\text {,} \end{aligned}$$
(E3)

where \(\kappa \equiv p_{X}^{\epsilon }(1-\frac{(1+\nu _{\epsilon }^{X})q_{i,\epsilon }}{Q_{\epsilon }+\epsilon })(1-\chi )\). The first three terms on the right hand side of (E3) are equal to the negative of the determinant of the bordered Hessian matrix of \(u_{i}\) at equilibrium times the positive term \(\frac{1}{(\frac{\partial u_{i}}{\partial y_{i}})^{2}}\), so it is positive from (2c). For (E3) to be strictly negative, it is sufficient that \(\kappa \geqslant 0\). As \(\chi \leqslant 1\), and \(1-\frac{ (1+\nu _{\epsilon }^{X})q_{i,\epsilon }}{Q_{\epsilon }+\epsilon }\geqslant 0\) (the reverse inequality would lead to \(\chi <\eta _{i,\epsilon }^{X}\frac{ q_{i,\epsilon }}{B_{\epsilon }+\epsilon }\), with \(\eta _{i,\epsilon }^{X}\geqslant 0\), a contradiction). Then, \(\kappa \geqslant 0\). As \(\frac{ \partial ^{2}\pi _{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}}<0\), the solution to (E1) is unique, so the map \(\phi _{i}^{\epsilon }(\textbf{q} _{-i}^{L};\textbf{b}^{L};\epsilon )\) is point-valued, a function. As \(\pi _{i}^{\epsilon }(.)\) is strictly quasi-concave, and \({\mathcal {S}}_{i}\) is quasi-convex, the Kuhn-Tucker conditions are sufficient to identify the solution to (E1). Let \(\mathcal {L}_{i}^{\epsilon }(.;\epsilon ):\textbf{S}^{L}\times {\mathbb {R}} _{+}^{2}\times {\mathbb {R}} _{++}\rightarrow {\mathbb {R}}\), be given by

$$\begin{aligned} \mathcal {L}_{i}^{\epsilon }(.;\epsilon ):=\pi _{i}^{\epsilon }(q_{i,\epsilon },\textbf{q}_{-i,\epsilon }^{L}, {{\varvec{\sigma }}} ^{\epsilon }(q_{i,\epsilon },.;\epsilon );\textbf{b}_{\epsilon }^{L},{{\varvec{\varphi }}}^{\epsilon }(q_{i,\epsilon },{.};\epsilon ))+\lambda _{i,\epsilon }(\alpha _{i}-q_{i,\epsilon })+\mu _{i,\epsilon }q_{i,\epsilon } \text {,} \end{aligned}$$
(E4)

where \(\lambda _{i,\epsilon },\mu _{i,\epsilon }\geqslant 0\), \(i\in T_{X}^{L}\). Then, \(\phi _{i}^{\epsilon }(\textbf{q}_{-i,\epsilon }^{L}; \textbf{b}_{\epsilon }^{L};\epsilon )\) is the unique solution to:

$$\begin{aligned} \underset{q_{i,\epsilon }}{\max }\mathcal {L}_{i}^{\epsilon }(.;\epsilon )= { u}_{i}{ (\alpha }_{i}{ -q}_{i,\epsilon }{ ,}\frac{ \sum _{j\in T_{Y}^{L}}b_{j,\epsilon }+\sum \nolimits _{j\in T_{Y}^{F}}\varphi _{j}^{\epsilon }({.};\epsilon )+\epsilon }{\sum _{k\in T_{X}^{L}}q_{k,\epsilon }+\sum \nolimits _{k\in T_{X}^{F}}\sigma _{k}^{\epsilon }({.};\epsilon )+\epsilon }{ q} _{i,\epsilon }{ )+\lambda }_{i,\epsilon }{ (\alpha }_{i}{ -q}_{i,\epsilon }{ )+\mu }_{i,\epsilon }{ q}_{i,\epsilon }\text {. } \end{aligned}$$
(E5)

For all \(\epsilon >0\), the Kuhn-Tucker conditions may be written:

$$\begin{aligned} \begin{array}{c} \frac{\partial \mathcal {L}_{i}^{\epsilon }}{\partial q_{i,\epsilon }}=-\frac{ \partial u_{i}}{\partial x_{i}}+\chi p_{X}^{\epsilon }\frac{\partial u_{i}}{ \partial y_{i}}-\lambda _{i,\epsilon }+\mu _{i,\epsilon }=0\text {,} \\ \\ \lambda _{i,\epsilon }\geqslant 0\text {, }(\alpha _{i}-b_{i,\epsilon })\geqslant 0\text {, with }\lambda _{i,\epsilon }(\alpha _{i}-b_{i,\epsilon })=0\text {,} \\ \\ \mu _{i,\epsilon }\geqslant 0\text {, }b_{i,\epsilon }\geqslant 0\text {, with }\mu _{i,\epsilon } b_{i,\epsilon }=0\text {.} \end{array} \end{aligned}$$
(E6)

If \(\phi _{i}^{\epsilon }(.)>0\), then \(\mu _{i,\epsilon }=0\), where \(b_{i,\epsilon }\) is the solution to:

$$\begin{aligned} { -}\frac{\partial u_{i}}{\partial x_{i}}{ +\chi p} _{X}^{\epsilon }\frac{\partial u_{i}}{\partial y_{i}}{ =\mu } _{i,\epsilon }\text {.} \end{aligned}$$
(E7)

If \(\lambda _{i,\epsilon }>0\), then \(q_{i,\epsilon }=\phi _{i}^{\epsilon }( .)=\alpha _{i}\); if \(\lambda _{i,\epsilon }=0\), then \(\phi _{i}^{\epsilon }(.)\in (0,\alpha _{i})\). If \(\mu _{i,\epsilon }>0\) , then \(\phi _{i}^{\epsilon }(.)=0\) and \(\lambda _{i,\epsilon }=0\) since \(q_{i,\epsilon }<\alpha _{i}\). Then, either \(\ \phi _{i}^{\epsilon }( .)>0\) when \(b_{i,\epsilon }\in (0,\alpha _{i}]\) or \(\ \phi _{i}^{\epsilon }(.)=0\). Then, there is a unique maximum \(q_{i,\epsilon }=\phi _{i}^{\epsilon }(.)\geqslant 0\), \(i\in T_{X}^{L}\).

Finally, we show \(\phi _{i}^{\epsilon }({.})\in \mathcal {C}^{\infty }\) . Equation \(\frac{\partial \mathcal {L}_{i}^{\epsilon }}{\partial q_{i,\epsilon }}=0\) in (E6) defines implicitly \(\phi _{i}^{\epsilon }( {.})\). As \({\pi }_{i}^{\epsilon }(.)\in \mathcal {C}^{\infty }\) and \(\frac{\partial ^{2}{\pi }_{i}^{\epsilon }}{(\partial q_{i,\epsilon })^{2}}\ne 0\), from the Implicit Function Theorem, \(\phi _{i}^{\epsilon }({.})\in \mathcal {C}^{\infty }\).

A similar reasoning holds for \(\psi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{-j,\epsilon }^{L};\epsilon )\), \(j\in T_{Y}^{L}\).\(\blacksquare\)

1.6 Appendix F: Proof of Lemma 3

To show Lemma 3, we adapt to our sequential framework one result based on the Uniform Monotonicity Lemma (see Lemma C, p. 8, in Dubey and Shubik 1978).

Lemma 6

(Uniform monotonicity). Let \(c\in \left\{ X,Y\right\}\), let \(u_{k}: {\mathbb {R}} _{+}^{2}\rightarrow {\mathbb {R}}\), \(z_{k}\mapsto u_{k}(z_{k})\), \(k=i,j\), \(i\in T_{X}\), \(j\in T_{Y}\), be a continuous and increasing function, and let H be a positive constant. Then, there exists a positive real number \(h(u_{k}(.),c,H)\in (0,1)\) such that, for all \(s_{k},z_{k}\in {\mathbb {R}} _{+}^{2}\), if \(\left\| \textbf{z}_{k}\right\| \leqslant H\) and \(\left\| \textbf{s}_{k}-\textbf{z}_{k}\right\|\) \(\leqslant h(u_{k}(.),c,H)\), then \(u_{k}(s_{k}+e^{c})>u_{k}(z_{k})\), where \(\left\| .\right\|\) denotes the Euclidean norm, and \(e^{c}\) denotes the vector in \({\mathbb {R}} _{+}^{2}\) whose c-th component is 1 and the other 0.

Proof

Lemma 6 is a direct consequence of Lemma C in Dubey and Shubik (1978) (see Appendix B, p. 19) as, for each k, \(u_{k}(.)\) satisfies Assumptions 2a-2b.

We now show that there exist some uniform bounds on the relative price in each perturbed subgame. Let \((\tilde{\textbf{q}}_{\epsilon }^{L},\tilde{\textbf{q}}_{\epsilon }^{F}(\tilde{\textbf{q}}_{\epsilon }^{L};\tilde{\textbf{ b}}_{\epsilon }^{L});\tilde{\textbf{b}}_{\epsilon }^{L},\tilde{\textbf{b}} _{\epsilon }^{F}(\tilde{\textbf{q}}_{\epsilon }^{L};\tilde{\textbf{b}} _{\epsilon }^{L}))\) be an \(\epsilon\)-SNE, and let \(\tilde{p}_{X}^{\epsilon } \overset{\vartriangle }{=}p_{X}^{\epsilon }(\tilde{\textbf{q}}_{\epsilon }^{L},\tilde{\textbf{q}}_{\epsilon }^{F}(\tilde{\textbf{q}}_{\epsilon }^{L}; \tilde{\textbf{b}}_{\epsilon }^{L});\tilde{\textbf{b}}_{\epsilon }^{L}, \tilde{\textbf{b}}_{\epsilon }^{F}(\tilde{\textbf{q}}_{\epsilon }^{L}; \tilde{\textbf{b}}_{\epsilon }^{L}))\) be the corresponding relative price.

1. First, \(\exists \xi _{1}>0\mid \tilde{p}_{X}^{\epsilon }>\xi _{1}\). Consider one leader j and one follower \(j^{\prime }\). Let

$$\begin{aligned} { H}&{ =}&\max { (\bar{\alpha },\bar{\beta })}\text {, with } { \bar{\alpha }\equiv }\mathop {\textstyle \sum }_{i\in T_{X}}{ \alpha }_{i}\text { and }{ \bar{\beta }\equiv }\mathop {\textstyle \sum }_{j\in T_{Y}}{ \beta }_{j}\text {;} \nonumber \\ { h}&{ =}&\min { (h(u}_{j}{ ,Y,H),h(u}_{j^{\prime }} { ,Y,H))}\text {;} \nonumber \\ { A}&{ =}&\frac{1}{2}\min { (\beta }_{j}{ ,\beta } _{j^{\prime }}{ )}\text {, }{ j\ne j}^{\prime }\text {.} \end{aligned}$$
(F1)

Assume, without loss of generality, that \(\tilde{b}_{j,\epsilon }\leqslant \frac{\tilde{B}_{\epsilon }}{2}\) or \(\tilde{b}_{j^{\prime },\epsilon }\leqslant \frac{\tilde{B}_{\epsilon }}{2}\), for at least one leader j or one follower \(j^{\prime }\) (otherwise \(\tilde{b}_{j,\epsilon }+\) \(\tilde{b} _{j^{\prime },\epsilon }>\tilde{B}_{\epsilon }\)). Consider an increase of strategic supply at each stage.

Consider first follower \(j^{\prime }\). Suppose \(\beta _{j^{\prime }}-\tilde{ b}_{j^{\prime },\epsilon }\geqslant A\). Then, an increase \(\delta\) in follower \(j^{\prime }\)’s supply such that \(b_{j^{\prime },\epsilon }(\delta )=\tilde{b}_{j^{\prime },\epsilon }+\delta\), with \(\delta \in (0,\frac{1}{2} \min \{\epsilon ,A\}]\), has the following incremental effect on his final holding:

$$\begin{aligned} { x}_{j^{\prime },\epsilon }{ (\delta )-x}_{j^{\prime },\epsilon }= & {} \frac{\tilde{Q}_{\epsilon }+\epsilon }{\tilde{B}_{\epsilon }+\epsilon +\delta }{ (\tilde{b}}_{j^{\prime },\epsilon }{ +\delta )}-\frac{ \tilde{Q}_{\epsilon }+\epsilon }{\tilde{B}_{\epsilon }+\epsilon }{ \tilde{b}}_{j^{\prime },\epsilon } \nonumber \\= & {} { \delta }\frac{\tilde{B}_{\epsilon }+\epsilon -\tilde{b} _{j^{\prime },\epsilon }}{\tilde{B}_{\epsilon }+\epsilon +\delta }\frac{ \tilde{Q}_{\epsilon }+\epsilon }{\tilde{B}_{\epsilon }+\epsilon } \nonumber \\> & {} { \delta }\frac{\frac{\tilde{B}_{\epsilon }}{2}+\frac{\epsilon }{2}+ \frac{\delta }{2}}{\tilde{B}_{\epsilon }+\epsilon +\delta }\frac{\tilde{Q} _{\epsilon }+\epsilon }{\tilde{B}_{\epsilon }+\epsilon }=\frac{\delta }{2} \frac{1}{\tilde{p}_{X}^{\epsilon }}\text {,} \end{aligned}$$
(F2)

and

$$\begin{aligned} y_{j^{\prime },\epsilon }(\delta )-y_{j^{\prime },\epsilon }=(\beta _{j^{\prime }}-\tilde{q}_{j^{\prime },\epsilon }-\delta )-(\beta _{j^{\prime }}-\tilde{q}_{j^{\prime },\epsilon })=-\delta \text {,} \end{aligned}$$
(F3)

where the strict inequality in (F2) results from \(\tilde{B}_{\epsilon }+\epsilon -\tilde{b}_{j^{\prime },\epsilon }\geqslant \frac{\tilde{B} _{\epsilon }}{2}+\epsilon >\frac{\tilde{B}_{\epsilon }}{2}+\frac{\epsilon }{2 }+\frac{\delta }{2}\) (as \(\tilde{b}_{j^{\prime },\epsilon }\leqslant \frac{ \tilde{B}_{\epsilon }}{2}\) and \(\delta \leqslant \frac{1}{2}\epsilon )\). Let us define

$$\begin{aligned} t=-2\tilde{p}_{X}^{\epsilon }\textbf{e}^{Y}\text {, where } \,\, \textbf{e} ^{Y}=(0,1)\text {.} \end{aligned}$$
(F4)

Then, the following vector inequality holds:

$$\begin{aligned} { \textbf{z}}_{j^{\prime },\epsilon }{ (b}_{j^{\prime },\epsilon }{ (\delta ),p}_{X}^{\epsilon }{ (\tilde{\textbf{q}}}_{\epsilon }^{L}{ ,\tilde{\textbf{q}}}_{\epsilon }^{F}{ (.);\tilde{\textbf{b }}_{\epsilon }^{L},b}_{j^{\prime },\epsilon }{ (\delta ),\tilde{\textbf{b}}}_{-j,\epsilon }^{F}{ (.)))\ge \textbf{z}}_{j^{\prime },\epsilon }{ (\tilde{b}}_{j^{\prime },\epsilon }{ ,\tilde{p}} _{X}^{\epsilon }{ )+}\frac{\delta }{2}\frac{1}{\tilde{p}_{X}^{\epsilon }}{ (\textbf{e}}^{X}{ +t)}\text {,} \end{aligned}$$
(F5)

where \(\textbf{e}^{X}=(1,0)\), and where, by (F2), the inequality (F5) is strict for the first component of \(\textbf{z}_{j^{\prime },\epsilon }\). We can now apply Lemma 6, with \(c=X\), \(\textbf{z}_{j^{\prime },\epsilon }= \textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p }_{X}^{\epsilon })\) and \(\textbf{s}_{j^{\prime },\epsilon }=\textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon }, \tilde{p}_{X}^{\epsilon })+t\). We know that \(\textbf{z} _{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p} _{X}^{\epsilon })\in {\mathbb {R}} _{+}^{2}\) and \(\left\| \textbf{z}_{j^{\prime },\epsilon }(\tilde{b} _{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon }) \right\| \leqslant H\). If \(\textbf{s}_{j^{\prime },\epsilon }\in {\mathbb {R}} _{+}^{2}\) and \(\left\| t\right\| \leqslant h\), then, by Lemma 6, we get:

$$\begin{aligned} u_{j^{\prime }}(\textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+\textbf{e}^{X}+t)>u_{j^{\prime }}( \textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p }_{X}^{\epsilon }))\text {.} \end{aligned}$$
(F6)

As \(u_{j^{\prime }}\) satisfies Assumptions (2b) and (2c), and as \(0<\frac{ \delta }{2}\frac{1}{\tilde{p}_{X}^{\epsilon }}<1\), then we deduce:

$$\begin{aligned} u_{j^{\prime }}\left( \textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+\frac{\delta }{2} \frac{1}{\tilde{p}_{X}^{\epsilon }}(\textbf{e}^{X}+t)\right) >u_{j^{\prime }}( \textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p }_{X}^{\epsilon }))\text {.} \end{aligned}$$
(F7)

Then, as (F5) holds strictly for its first component, from (2b), we deduce:

$$\begin{aligned} u_{j^{\prime }}(\textbf{z}_{j^{\prime },\epsilon }(b_{j^{\prime },\epsilon }(\delta ),p_{X}^{\epsilon }(\tilde{\textbf{q}}_{\epsilon }^{L},\tilde{\textbf{q}}_{\epsilon }^{F}({.});\tilde{\textbf{b}}_{\epsilon }^{L},b_{j^{\prime },\epsilon }(\delta ),\tilde{\textbf{b}}_{-j,\epsilon }^{F}({.}))))>u_{j^{\prime }}(\textbf{z}_{j^{\prime },\epsilon }(\tilde{b}_{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon } ))\text {,} \end{aligned}$$
(F8)

a contradiction. Hence, either \(\textbf{z}_{j^{\prime },\epsilon }(b_{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+t< \textbf{0}\) or \(\left\| t\right\| >h\). If \(\textbf{z}_{j^{\prime },\epsilon }(b_{j^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+t<\textbf{0}\), then, \(\tilde{y}_{j^{\prime },\epsilon }-2\tilde{p }_{X}^{\epsilon }<0\). As \(\tilde{y}_{j^{\prime },\epsilon }=\beta _{j^{\prime }}-\tilde{b}_{j^{\prime },\epsilon }\geqslant A\), we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{A}{2}\text {.} \end{aligned}$$
(F9)

Suppose now we have \(\left\| t\right\| >h\). Then, we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{h}{2}\text {.} \end{aligned}$$
(F10)

Finally, assume that the inequality \(\beta _{j^{\prime }}-\tilde{b} _{j^{\prime },\epsilon }\geqslant A\) does not hold, which means that \(\beta _{j^{\prime }}-\tilde{b}_{j^{\prime },\epsilon }<A\). Then, we have \(\tilde{b }_{j^{\prime },\epsilon }>\beta _{j}-A\geqslant A\). Then \(\tilde{b} _{j^{\prime },\epsilon }>A\), so, we get:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{A}{\bar{\alpha }}\text {.} \end{aligned}$$
(F11)

Therefore, it suffices to take for follower \(j^{\prime }\):

$$\begin{aligned} \xi _{1}^{j^{\prime }}=\min \left( \frac{A}{2},\frac{h}{2},\frac{A}{\bar{ \alpha }}\right) \text {.} \end{aligned}$$
(F12)

Consider now leader j. Assume \(\beta _{j}-\tilde{b}_{j,\epsilon }\geqslant A\). Let \(b_{j,\epsilon }(\delta )=\tilde{b}_{j,\epsilon }+\delta\) , with \(\delta \in (0,\frac{1}{2}\min (\epsilon ,A)]\). As \(\tilde{p} _{X}^{\epsilon }=\frac{\sum \nolimits _{j\in T_{Y}^{L}}\tilde{b}_{j,\epsilon }+\mathop {\textstyle \sum }\nolimits _{j\in T_{Y}^{F}}\varphi _{j}^{\epsilon }(\textbf{b} _{\epsilon }^{L};\textbf{q}_{\epsilon }^{L})+\epsilon }{ \sum \nolimits _{i\in T_{X}^{L}}\tilde{q}_{i,\epsilon }+\mathop {\textstyle \sum }\nolimits _{i\in T_{X}^{F}}\sigma _{i}^{\epsilon }(\textbf{b}_{\epsilon }^{L};\textbf{q} _{\epsilon }^{L})+\epsilon }\), then we have:

$$\begin{aligned} { x}_{j,\epsilon }{ (\delta )-x}_{j,\epsilon }= & {} \frac{ \sum \nolimits _{i}\tilde{q}_{i,\epsilon }+\sum \nolimits _{i}\sigma _{i}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L}+\delta )+\epsilon }{\sum \nolimits _{j}\tilde{b}_{j,\epsilon }+\delta +\sum \nolimits _{j}\varphi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L}+\delta )+\epsilon }{ (\tilde{ b}}_{j,\epsilon }{ +\delta )}-\frac{\tilde{b}_{j,\epsilon }}{\tilde{p} _{X}^{\epsilon }} \nonumber \\= & {} { \delta }\frac{\tilde{B}_{\epsilon }+\epsilon -(1+\nu _{\epsilon }^{Y})\tilde{b}_{j,\epsilon }}{\tilde{B}_{\epsilon }+\epsilon +(1+\nu _{\epsilon }^{Y})\delta }\frac{\tilde{Q}_{\epsilon }+\epsilon }{\tilde{B} _{\epsilon }+\epsilon }+{ \delta \eta }_{\epsilon }^{Y}\frac{\tilde{b} _{j,\epsilon }+\delta }{\tilde{B}_{\epsilon }+\epsilon +(1+\nu _{\epsilon }^{Y})\delta } \nonumber \\> & {} { \delta (1-\nu }_{\epsilon }^{Y}{ )}\frac{\frac{\tilde{\textbf{B}}_{\epsilon }}{2}+\frac{\epsilon }{2}+(1+\nu _{\epsilon }^{Y})\frac{ \delta }{2}}{\tilde{B}_{\epsilon }+\epsilon +(1+\nu _{\epsilon }^{Y})\delta } \frac{1}{\tilde{p}_{X}^{\epsilon }}+{ \delta a\eta }_{\epsilon }^{Y}\nonumber \\= & {} \frac{\delta }{2}\left( \frac{1-\nu _{\epsilon }^{Y}}{\tilde{p} _{X}^{\epsilon }}+2a\eta _{\epsilon }^{Y}\right) \text {, and} \end{aligned}$$
(F13)
$$\begin{aligned} y_{j,\epsilon }(\delta )-y_{j,\epsilon }=-\delta \text {,} \end{aligned}$$
(F14)

where \(a\equiv \frac{\tilde{b}_{j,\epsilon }+\delta }{\tilde{B}_{\epsilon }+\epsilon +(1+\nu _{\epsilon }^{Y})\delta }\), with \(0<a\leqslant 1\), \(\nu _{\epsilon }^{Y}=\frac{\partial \sum \nolimits _{j}\varphi _{j}^{\epsilon }(. )}{\partial b_{j,\epsilon }}\) and \(\eta _{\epsilon }^{Y}=\frac{ \partial \sum \nolimits _{i}\sigma _{i}^{\epsilon }(.)}{\partial b_{j,\epsilon }}\), and where the strict inequality results from \(\tilde{B} _{\epsilon }+\epsilon -(1+\nu _{\epsilon }^{Y})\tilde{b}_{j,\epsilon }\geqslant (1-\nu _{\epsilon }^{Y})\frac{\tilde{B}_{\epsilon }}{2}+\epsilon >(1-\nu _{\epsilon }^{Y})(\frac{\tilde{B}_{\epsilon }}{2}+\frac{\epsilon }{2} +(1+\nu _{\epsilon }^{Y})\frac{\delta }{2})\) as \(\tilde{b}_{j,\epsilon }\) \(\leqslant \frac{\tilde{B}_{\epsilon }}{2}\), \(\delta \leqslant \frac{1}{2} \epsilon\) and \(\nu _{\epsilon }^{Y}\in [-1,\frac{1}{2}]\). Let us define

$$\begin{aligned} t=-2\frac{\tilde{p}_{X}^{\epsilon }}{1-\nu _{\epsilon }^{Y}+2a\eta _{\epsilon }^{Y}\tilde{p}_{X}^{\epsilon }}\textbf{e}^{Y}\text {.} \end{aligned}$$
(F15)

Then, the following vector inequality holds:

$$\begin{aligned}{} & {} \textbf{z}_{j,\epsilon }(b_{j,\epsilon }(\delta ),p_{X}^{\epsilon }(\tilde{{\textbf{q}}}_{\epsilon }^{L}\mathbf {;\textbf{q}}_{\epsilon }^{F} {(\tilde{{\textbf{q}}}}_{\epsilon }^{L}{;}b_{j,\epsilon }(\delta ),\tilde{\textbf{b}}_{-j,\epsilon }^{L});b_{j,\epsilon }(\delta ),\tilde{\textbf{b}}_{-j,\epsilon }^{L},\textbf{b}_{\epsilon }^{F}( {\tilde{{\textbf{q}}}}_{\epsilon }^{L}\textbf{;}b_{j,\epsilon }(\delta ),\tilde{\textbf{b}}_{-j,\epsilon }^{L}))) \nonumber \\{} & {} \quad \ge \textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p}_{X}^{\epsilon } )+\frac{\delta }{2}\frac{1-\nu _{\epsilon }^{Y}+2a\eta _{\epsilon }^{Y}\tilde{p}_{X}^{\epsilon }}{\tilde{p}_{X}^{\epsilon }}( \textbf{e}^{X}+t)\text {.} \end{aligned}$$
(F16)

Let \(c=X\), \(\textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p} _{X}^{\epsilon })\) and \(\textbf{s}_{j,\epsilon }=\textbf{z} _{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p}_{X}^{\epsilon }\mathbf { )}+t\). We know \(\textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon }, \tilde{p}_{X}^{\epsilon })\in {\mathbb {R}} _{+}^{2}\) and \(\left\| \textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon }, \tilde{p}_{X}^{\epsilon })\right\| \leqslant H\). Suppose \(\textbf{s}_{j,\epsilon }\in {\mathbb {R}} _{+}^{2}\) and \(\left\| t\right\| \leqslant h\). Then, by Lemma 6:

$$\begin{aligned} u_{j}(\textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p} _{X}^{\epsilon })+\textbf{e}^{X}+t)>u_{j}(\textbf{z} _{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p}_{X}^{\epsilon }\mathbf { )})\text {.} \end{aligned}$$
(F17)

From Assumptions (2b) and (2c) and as \(0<\delta (\frac{1}{2}\frac{1-\nu _{\epsilon }^{Y}}{\tilde{p}_{X}^{\epsilon }}+a\eta _{\epsilon }^{Y})<1\), we deduce:

$$\begin{aligned} u_{j}(\textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p} _{X}^{\epsilon })+\frac{\delta }{2}\frac{1-\nu _{\epsilon }^{Y}+2a\eta _{\epsilon }^{Y}\tilde{p}_{X}^{\epsilon }}{\tilde{p} _{X}^{\epsilon }}(\textbf{e}^{X}+t))>u_{j}(\textbf{z}_{j,\epsilon }(\tilde{b} _{j,\epsilon },\tilde{p}_{X}^{\epsilon }))\text {.} \end{aligned}$$
(F18)

But then, by Assumptions (2b) and (2c), we deduce:

$$\begin{aligned}{} & {} u_{j}(z_{j,\epsilon }(b_{j,\epsilon }(\delta ),p_{X}^{\epsilon }(\tilde{q} _{\epsilon }^{L};q_{\epsilon }^{F}(\tilde{q}_{\epsilon }^{L};b_{j,\epsilon }(\delta ),\tilde{b}_{-j,\epsilon }^{L});b_{j,\epsilon }(\delta ),\tilde{b} _{-j,\epsilon }^{L},b_{\epsilon }^{F}(\tilde{q}_{\epsilon }^{L};b_{j,\epsilon }(\delta ),\tilde{b}_{-j,\epsilon }^{L}))))\nonumber \\{} & {} \quad >u_{j}(\textbf{z}_{j,\epsilon }(\tilde{b}_{j,\epsilon },\tilde{p} _{X}^{\epsilon }))\text {,} \end{aligned}$$
(F19)

a contradiction. Hence, either \(\textbf{z}_{j,\epsilon }(\tilde{b} _{j,\epsilon },\tilde{p}_{X}^{\epsilon })+t<\textbf{0}\) or \(\left\| t\right\| >h\). Thus, if \(\textbf{z}_{j,\epsilon }(\tilde{b} _{j,\epsilon },\tilde{p}_{X}^{\epsilon })+t<\textbf{0}\), then, \(\tilde{y}_{j,\epsilon }-\frac{2\tilde{p}_{X}^{\epsilon }}{1-\nu _{\epsilon }^{Y}+2a\eta _{\epsilon }^{Y}\tilde{p}_{X}^{\epsilon }}<0\). Then, we have:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{A}{2}\left( \frac{1-\nu _{\epsilon }^{Y}}{ 1-a\eta _{\epsilon }^{Y}A}\right) \text {,} \end{aligned}$$
(F20)

as \(\tilde{y}_{j,\epsilon }=\beta _{j}-\tilde{b}_{j,\epsilon }\geqslant A\), where \(\frac{A}{2}\frac{1-\nu _{\epsilon }^{Y}}{1-a\eta _{\epsilon }^{Y}A}>0\) . Reason: \(\frac{A}{2}\frac{1-\nu _{\epsilon }^{Y}}{1-a\eta _{\epsilon }^{Y}A}\geqslant \frac{A}{2}(1-\nu _{\epsilon }^{Y})>0\). The strict inequality holds as \(\frac{A}{2}>0\) and \(\nu _{\epsilon }^{Y}<1\), while the weak inequality results from \(a\eta _{\epsilon }^{Y}A\geqslant 0\) since \(0<a\leqslant 1\), \(A>0\), and \(\eta _{\epsilon }^{Y}\geqslant 0\) (remind, from (2a), that \(u_{j^{\prime }}\in \mathcal {C}^{\infty }\) so \(\eta _{\epsilon }^{Y}\) cannot be negative, and \(\chi \in [-1,1]\) in (E2)). Next, if \(\left\| t\right\| >h\), then:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{h}{2}\left( \frac{1-\nu _{\epsilon }^{Y}}{ 1-a\eta _{\epsilon }^{Y}h}\right) \text {,} \end{aligned}$$
(F21)

where \(\frac{h}{2}\frac{1-\nu _{\epsilon }^{Y}}{1-a\eta _{\epsilon }^{Y}h}>0\) . Reason: \(\frac{h}{2}\frac{1-\nu _{\epsilon }^{Y}}{1-a\eta _{\epsilon }^{Y}h}\geqslant \frac{h}{2}(1-\nu _{\epsilon }^{Y})>0\). The strict inequality holds as \(\frac{h}{2}\in (0,\frac{1}{2})\) and \(\nu _{\epsilon }^{Y}<1\), while the weak inequality results from \(a\eta _{\epsilon }^{Y}h\geqslant 0\) since \(0<a\leqslant 1\), \(h\in (0,1)\), and \(\eta _{\epsilon }^{Y}\geqslant 0\). Finally, assume that \(\beta _{j}-\tilde{b} _{j,\epsilon }\geqslant A\) does not hold, i.e. \(\beta _{j}-\tilde{b} _{j,\epsilon }<A\). Then, \(\tilde{b}_{j,\epsilon }>\beta _{j}-A\geqslant A\) . Then, \(\tilde{b}_{j,\epsilon }>A\), so we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\frac{A}{\bar{\alpha }}\text {.} \end{aligned}$$
(F22)

Therefore, it suffices to take for leader j:

$$\begin{aligned} \xi _{1}^{j}=\min \left( \frac{A}{2}\left( \frac{1-\nu _{\epsilon }^{Y}}{ 1-a\eta _{\epsilon }^{Y}A}\right) ,\frac{h}{2}\left( \frac{1-\nu _{\epsilon }^{Y}}{1-a\eta _{\epsilon }^{Y}h}\right) ,\frac{A}{\bar{\alpha }}\right) \text {.} \end{aligned}$$
(F23)

Then, by taking \(\xi _{1}=\min (\xi _{1}^{j},\xi _{1}^{j^{\prime }})\), where \(\xi _{1}>0\), we conclude that:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }>\xi _{1}\text {. } \end{aligned}$$
(F24)

2. Second, \(\exists \xi _{2}>0\mid \tilde{p}_{X}^{\epsilon }<\xi _{2}\). Consider one leader i and one follower \(i^{\prime }\). Let

$$\begin{aligned} \hat{h}= & {} \min (h(u_{j},Y,H),h(u_{j^{\prime }},Y,H))\text {;} \nonumber \\ \hat{A}= & {} \frac{1}{2}\min (\alpha _{i},\alpha _{i^{\prime }})\text {, }i\ne i^{\prime }\text {.} \end{aligned}$$
(F25)

Assume \(\tilde{q}_{i,\epsilon }\leqslant \frac{\tilde{Q}_{\epsilon }}{2}\) or \(\tilde{q}_{i^{\prime },\epsilon }\leqslant \frac{\tilde{Q}_{\epsilon }}{2}\) . Consider follower \(i^{\prime }\). Assume \(\alpha _{i^{\prime }}-\tilde{q} _{i^{\prime },\epsilon }\geqslant \hat{A}\). Let \(q_{i^{\prime },\epsilon }(\delta )=\tilde{q}_{i^{\prime },\epsilon }+\delta\), with \(\delta \in (0, \frac{1}{2}\min \{\epsilon ,\hat{A}\}]\). Then, his final holding is such that:

$$\begin{aligned} x_{i^{\prime },\epsilon }(\delta )-x_{i^{\prime },\epsilon }=-\delta \text { and }y_{i^{\prime },\epsilon }(\delta )-y_{i^{\prime },\epsilon }>\frac{ \delta }{2}\tilde{p}_{X}^{\epsilon }\text {,} \end{aligned}$$
(F26)

as \(\tilde{Q}_{\epsilon }+\epsilon -\tilde{q}_{i^{\prime },\epsilon }\geqslant \frac{\tilde{Q}_{\epsilon }}{2}+\epsilon \geqslant \frac{\tilde{Q} _{\epsilon }+\epsilon -\tilde{q}_{i^{\prime },\epsilon }}{2}+\frac{\epsilon }{2}+\frac{\delta }{2}\) (as \(\delta <\epsilon )\). Let us define

$$\begin{aligned} t=-\frac{2}{\tilde{p}_{X}^{\epsilon }}\textbf{e}^{X}\text {.} \end{aligned}$$
(F27)

Then, we have the vector inequality:

$$\begin{aligned} { \textbf{z}}_{i^{\prime },\epsilon }{ (q}_{i^{\prime },\epsilon }{ (\delta ),p}_{X}^{\epsilon }{ (\tilde{\textbf{q}}}_{\epsilon }^{L}{ ,q}_{i^{\prime },\epsilon }{ (\delta ),\tilde{\textbf{q}}} _{-i^{\prime },\epsilon }^{F}{ (.);\tilde{\textbf{b}}}_{\epsilon }^{L} { ,\tilde{\textbf{b}}}_{\epsilon }^{F}{ (.)))\ge \textbf{z}} _{i^{\prime },\epsilon }{ (\tilde{q}}_{i^{\prime },\epsilon }{ , \tilde{p}}_{X}^{\epsilon }{ )+}\frac{\delta }{2}{ \tilde{p}} _{X}^{\epsilon }{ (t+\textbf{e}}^{Y}{ )}\text {.} \end{aligned}$$
(F28)

Suppose that \(\textbf{r}_{i,\epsilon }\in {\mathbb {R}} _{+}^{2}\) and \(\left\| t\right\| \leqslant h\). Then, by Lemma 6, with \(c=Y\), we get:

$$\begin{aligned} u_{i^{\prime }}(\textbf{z}_{i^{\prime },\epsilon }(\tilde{q}_{i^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+t+\textbf{e}^{Y})>u_{i^{\prime }}( \textbf{z}_{i^{\prime },\epsilon }(\tilde{q}_{i^{\prime },\epsilon },\tilde{p }_{X}^{\epsilon })). \end{aligned}$$
(F29)

As Assumptions (2b) and (2c) hold for \(u_{i^{\prime }}\), and as \(0<\frac{ \delta }{2}\tilde{p}^{\epsilon }<1\), then:

$$\begin{aligned} u_{i^{\prime }}\left( \textbf{z}_{i^{\prime },\epsilon }(\tilde{q}_{i^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })+\frac{\delta }{2}\tilde{p} _{X}^{\epsilon }(t+\textbf{e}^{Y})\right) >u_{i^{\prime }}(\textbf{z}_{i^{\prime },\epsilon }(\tilde{q}_{i^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon })) \text {.} \end{aligned}$$
(F30)

But then, by Assumptions (2b) and (2c), we have that:

$$\begin{aligned} u_{i^{\prime }}(\textbf{z}_{i^{\prime },\epsilon }(q_{i^{\prime },\epsilon }(\delta ),p_{X}^{\epsilon }(q_{i^{\prime },\epsilon }(\delta ), \tilde{{\textbf{q}}}_{-i^{\prime },\epsilon };\tilde{\textbf{b}}_{\epsilon } )))>u_{i^{\prime }}(\textbf{z}_{i^{\prime },\epsilon }( \tilde{q}_{i^{\prime },\epsilon },\tilde{p}_{X}^{\epsilon }))\text {,} \end{aligned}$$
(F31)

a contradiction. Then, either \(\textbf{z}_{i^{\prime },\epsilon }(\tilde{q} _{i^{\prime },\epsilon },p_{X}^{\epsilon })+t<\textbf{0}\) or \(\left\| t\right\| >h\). Thus, if \(\textbf{z}_{i^{\prime },\epsilon }(\tilde{q} _{i^{\prime },\epsilon },p_{X}^{\epsilon })+t<\textbf{0}\), then, \(\tilde{x} _{i^{\prime },\epsilon }-\frac{2}{\tilde{p}_{X}^{\epsilon }(\tilde{\textbf{q} }_{\epsilon };\tilde{\textbf{b}}_{\epsilon })}<0\). As \(\tilde{x}_{i^{\prime },\epsilon }=\alpha _{i^{\prime }}-\tilde{q}_{i^{\prime },\epsilon }\geqslant \hat{A}\), we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{2}{\hat{A}}\text {.} \end{aligned}$$
(F32)

Suppose now we have \(\left\| t\right\| >h\). Then, we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{2}{\hat{h}}\text {.} \end{aligned}$$
(F33)

Finally, assume \(\alpha _{i}-\tilde{q}_{i^{\prime },\epsilon }<\hat{A}\). Then, \(\tilde{q}_{i^{\prime },\epsilon }>\alpha _{i}-\hat{A}\geqslant \hat{A}\), so \(\tilde{q}_{i^{\prime },\epsilon }>\hat{A}\). We deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{\bar{\beta }}{\hat{A}}\text {.} \end{aligned}$$
(F34)

Therefore, it is sufficient to take:

$$\begin{aligned} \xi _{2}^{i^{\prime }}=\max \left( \frac{2}{\hat{A}},\frac{2}{\hat{h}},\frac{ \bar{\beta }}{\hat{A}}\right) \text {.} \end{aligned}$$
(F35)

Consider now leader i. Assume that \(\alpha _{i}-\tilde{q}_{i,\epsilon }\geqslant \hat{A}\). Let \(q_{i,\epsilon }(\delta )=\tilde{q}_{i,\epsilon }+\delta\), with \(\delta \in (0,\frac{1}{2}\min (\epsilon ,\hat{A})]\). Such an increase has the following effect on her final holding:

$$\begin{aligned}{} & {} x_{i,\epsilon }(\delta )-x_{i,\epsilon }=-\delta \text {, and} \end{aligned}$$
(F36)
$$\begin{aligned}{} & {} { y}_{i,\epsilon }{ (\delta )-y}_{i,\epsilon } =\frac{ \sum \nolimits _{j}\tilde{b}_{j,\epsilon }+\sum \nolimits _{j}\varphi _{j}^{\epsilon }(\textbf{b}_{\epsilon }^{L};\textbf{q}_{\epsilon }^{L}+\delta )+\epsilon }{\sum \nolimits _{i}\tilde{q}_{i,\epsilon }+\delta +\sum \nolimits _{i}\sigma _{i}^{\epsilon }(\textbf{b}_{\epsilon }^{L};\textbf{q}_{\epsilon }^{L}+\delta )+\epsilon }{ (\tilde{ q}}_{i,\epsilon }{ +\delta )}-{ \tilde{p}}_{X}^{\epsilon } { \tilde{q}}_{i,\epsilon } \nonumber \\= & {} { \delta }\frac{\tilde{Q}_{\epsilon }+\epsilon -(1+\nu _{\epsilon }^{X})\tilde{q}_{i,\epsilon }}{\tilde{Q}_{\epsilon }+(1+\nu _{\epsilon }^{X})\delta +\epsilon }\frac{\tilde{B}_{\epsilon }+\epsilon }{\tilde{Q} _{\epsilon }+\epsilon }+{ \delta \eta }_{\epsilon }^{X}\frac{\tilde{q} _{i,\epsilon }+\delta }{\tilde{Q}_{\epsilon }+(1+\nu _{\epsilon }^{X})\delta +\epsilon } \nonumber \\> & {} { \delta (1-\nu }_{\epsilon }^{X}{ )}\frac{\frac{\tilde{Q} _{\epsilon }}{2}+(1+\nu _{\epsilon }^{X})\frac{\delta }{2}+\frac{\epsilon }{2 }}{\tilde{Q}_{\epsilon }+(1+\nu _{\epsilon }^{X})\delta +\epsilon }{ \tilde{p}}_{X}+{ \delta d\eta }_{\epsilon }^{X} \nonumber \\= & {} \frac{\delta }{2}{ ((1-\nu }_{\epsilon }^{X}{ )\tilde{p}} _{X}^{\epsilon }{ +2d\eta }_{\epsilon }^{X}{ )}\text {,} \end{aligned}$$
(F37)

where \(d\equiv \frac{\tilde{q}_{i,\epsilon }+\delta }{\tilde{Q}_{\epsilon }+(1+\nu _{\epsilon }^{X})\delta +\epsilon }\), with \(0<d\leqslant 1\),\(\ \nu _{\epsilon }^{X}=\frac{\partial \sum \nolimits _{i}\sigma _{i}^{\epsilon }( \textbf{q}_{\epsilon }^{L};\textbf{b}_{\epsilon }^{L};\epsilon )}{ \partial q_{i,\epsilon }}\) and \(\eta _{\epsilon }^{X}=\frac{\partial \sum \nolimits _{j}\varphi _{j}^{\epsilon }(\textbf{q}_{\epsilon }^{L};\textbf{ b}_{\epsilon }^{L};\epsilon )}{\partial q_{i,\epsilon }}\) for \(\delta\) sufficiently small, and where the strict inequality results from \(\tilde{Q}_{\epsilon }+\epsilon -(1+\nu _{\epsilon }^{X})\tilde{q} _{i,\epsilon }\geqslant (1-\nu _{\epsilon }^{X})(\frac{\tilde{Q}_{\epsilon } }{2}+\frac{\epsilon }{2}+(1+\nu _{\epsilon }^{X})\frac{\delta }{2})\) as \(\tilde{q}_{i,\epsilon }\leqslant \frac{\tilde{Q}_{\epsilon }}{2}\) always holds, and as \(\delta <\epsilon\), with \(\nu _{\epsilon }^{X}\in [-1,1)\). Let us define

$$\begin{aligned} t=-2\frac{1}{(1-\nu _{\epsilon }^{X})\tilde{p}_{X}^{\epsilon }+2d\eta _{\epsilon }^{X}}\textbf{e}^{X}\text {.} \end{aligned}$$
(F38)

Then, the following vector inequality holds:

$$\begin{aligned}{} & {} \textbf{z}_{i,\epsilon }(q_{i,\epsilon }(\delta ),p_{X}^{\epsilon }(q_{i,\epsilon }(\delta ),\tilde{{\textbf{q}}}_{-i,\epsilon }^{L} \mathbf {;\textbf{q}}_{\epsilon }^{F}\mathbf {(}q_{i,\epsilon }(\delta ), {\tilde{{\textbf{q}}}}_{\epsilon }^{L};\tilde{\textbf{b}} _{\epsilon }^{L});\tilde{\textbf{b}}_{\epsilon }^{L},\textbf{b} _{\epsilon }^{F}(q_{j,\epsilon }(\delta ),{\tilde{{\textbf{q}}} }_{-i,\epsilon }^{L};\tilde{\textbf{b}}_{\epsilon }^{L})))\nonumber \\{} & {} \quad \ge \textbf{z}_{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p}_{X}^{\epsilon } )+\frac{\delta }{2}((1-\nu _{\epsilon }^{X})\tilde{p} _{X}^{\epsilon }+2d\eta _{\epsilon }^{X})(t+\textbf{e}^{Y})\text {.} \end{aligned}$$
(F39)

Suppose that \(\textbf{s}_{i,\epsilon }\in {\mathbb {R}} _{+}^{2}\) and \(\left\| t\right\| \leqslant h\). Then, by Lemma 6, we deduce:

$$\begin{aligned} u_{i}(\textbf{z}_{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p} _{X}^{\epsilon })+t+\textbf{e}^{Y})>u_{i}(\textbf{z} _{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p}_{X}^{\epsilon }\mathbf { )})\text {.} \end{aligned}$$
(F40)

From (2b) and (2c) and as \(0<\delta (\frac{1-\nu _{\epsilon }^{X}}{2}\tilde{p }_{X}^{\epsilon }+d\eta _{\epsilon }^{X})<1\), we deduce:

$$\begin{aligned} u_{i}(\textbf{z}_{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p} _{X}^{\epsilon }))+\frac{\delta }{2}((1-\nu _{\epsilon }^{X})\tilde{p}_{X}^{\epsilon }+2d\eta _{\epsilon }^{X})(t+\textbf{e} ^{Y}))>u_{i}(\textbf{z}_{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p} _{X}^{\epsilon }))\text {.} \end{aligned}$$
(F41)

But then, by Assumptions (2b) and (2c), we have that:

$$\begin{aligned}{} & {} u_{i}(q_{i,\epsilon }(\delta ),p_{X}^{\epsilon }(q_{i,\epsilon }(\delta ), \tilde{{\textbf{q}}}_{-i,\epsilon }^{L};\textbf{q}_{\epsilon }^{F}(q_{i,\epsilon }(\delta ),\tilde{{\textbf{q}}} _{-i,\epsilon }^{L};\tilde{\textbf{b}}_{\epsilon }^{L});\tilde{\textbf{b}}_{\epsilon }^{L},\textbf{b}_{\epsilon }^{F}(q_{j,\epsilon }(\delta ),\tilde{{\textbf{q}}}_{-i,\epsilon }^{L};\tilde{\textbf{b}} _{\epsilon }^{L})))) \nonumber \\{} & {} \quad >u_{i}(\textbf{z}_{i,\epsilon }(\tilde{q}_{i,\epsilon },\tilde{p} _{X}^{\epsilon }))\text {,} \end{aligned}$$
(F42)

a contradiction. Then, either \(\textbf{z}_{i,\epsilon }(\tilde{q} _{i,\epsilon },\tilde{p}_{X}^{\epsilon })+t<\textbf{0}\) or \(\left\| t\right\| >h\). Thus, if \(\textbf{z}_{i,\epsilon }(\tilde{q} _{i,\epsilon },\tilde{p}_{X}^{\epsilon })+t<\textbf{0}\), then, \(\tilde{x}_{i,\epsilon }-2\frac{1}{(1-\nu _{\epsilon }^{X})\tilde{p} _{X}^{\epsilon }+2d\eta _{\epsilon }^{X}}<0\). As \(\tilde{x}_{i,\epsilon }=\alpha _{i}-\tilde{q}_{i,\epsilon }\geqslant \hat{A}\), we get:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{2}{\hat{A}}\left( \frac{1-d\eta _{\epsilon }^{X}\hat{A}}{1-\nu _{\epsilon }^{X}}\right) \text {,} \end{aligned}$$
(F43)

where \(\frac{2}{\hat{A}}\frac{1-d\eta _{\epsilon }^{X}\hat{A}}{1-\nu _{\epsilon }^{X}}>0\). Reason: \(\frac{2}{\hat{A}}\frac{1-d\eta _{\epsilon }^{X}\hat{A}}{1-\nu _{\epsilon }^{X}}\geqslant \frac{2}{\hat{A}}\frac{d^{2}}{ 1-\nu _{\epsilon }^{X}}>0\) as \(d\in (0,1]\) and \(\nu _{\epsilon }^{X}<1\). The weak inequality leads to \(d^{2}+d\eta _{\epsilon }^{X}\hat{A}-1\leqslant 0\), so \(d\leqslant -\frac{\eta _{\epsilon }^{X}\hat{A}}{2}+\frac{\sqrt{(\eta _{\epsilon }^{X}\hat{A})^{2}+4}}{2}\), with \(0\leqslant d\leqslant 1\). Then we must have \(-\frac{\eta _{\epsilon }^{X}\hat{A}}{2}+\frac{\sqrt{(\eta _{\epsilon }^{X}\hat{A})^{2}+4}}{2}\leqslant 1\), which holds as \(\eta _{\epsilon }^{X}\hat{A}\geqslant 0\).

Next, if \(\left\| t\right\| >h\), then:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{2}{\hat{h}}\left( \frac{1-d\eta _{\epsilon }^{X}\hat{h}}{1-\nu _{\epsilon }^{X}}\right) \text {,} \end{aligned}$$
(F44)

where \(\frac{2}{\hat{h}}\frac{1-d\eta _{\epsilon }^{X}\hat{h}}{1-\nu _{\epsilon }^{X}}>0\). Reason: \(\frac{2}{\hat{h}}\frac{1-d\eta _{\epsilon }^{X}\hat{h}}{1-\nu _{\epsilon }^{X}}\geqslant \frac{2}{\hat{h}}\frac{d^{2}}{ 1-\nu _{\epsilon }^{X}}>0\). The weak inequality leads to \(d^{2}+d\eta _{\epsilon }^{X}\hat{h}-1\leqslant 0\), which yields \(d\leqslant -\frac{\eta _{\epsilon }^{X}\hat{h}}{2}+\frac{\sqrt{(\eta _{\epsilon }^{X}\hat{h})^{2}+4} }{2}\), with \(d>0\). As \(d\leqslant 1\), we must have \(-\frac{\eta _{\epsilon }^{X}\hat{h}}{2}+\frac{\sqrt{(\eta _{\epsilon }^{X}\hat{h})^{2}+4}}{2} \leqslant 1\), which is satisfied as \(\eta _{\epsilon }^{X}\hat{h}\geqslant 0\) .

Finally, assume that the inequality \(\alpha _{i}-\tilde{q}_{i,\epsilon }\geqslant \hat{A}\) does not hold, i.e., \(\alpha _{i}-\tilde{q}_{i,\epsilon }<\hat{A}\). Then, we have \(\tilde{q}_{i,\epsilon }>\alpha _{i}-\hat{A} \geqslant \hat{A}\). Then, we have \(\tilde{q}_{i,\epsilon }>\hat{A}\), so we deduce:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\frac{\bar{\beta }}{\hat{A}}\text {.} \end{aligned}$$
(F45)

Therefore, it suffices to take for leader i:

$$\begin{aligned} \xi _{1}^{i}=\max \left( \frac{2}{\hat{A}}\left( \frac{1-d\eta _{\epsilon }^{X}\hat{A}}{1-\nu _{\epsilon }^{X}}\right) ,\frac{2}{\hat{h}}\left( \frac{ 1-d\eta _{\epsilon }^{X}\hat{h}}{1-\nu _{\epsilon }^{X}}\right) ,\frac{\bar{ \beta }}{\hat{A}}\right) \text {.} \end{aligned}$$
(F46)

Then, by taking \(\xi _{2}=\max (\xi _{2}^{i},\xi _{2}^{i^{\prime }})\), we conclude that:

$$\begin{aligned} \tilde{p}_{X}^{\epsilon }<\xi _{2}\text {.} \end{aligned}$$
(F47)

\(\square\)

1.7 Appendix G: Proof of Theorem 2

To show that the Stackelberg–Nash equilibria are locally unique, i.e., that the set of critical equilibria is negligible, we use the Regular Value Theorem and Sard’s Theorem, which we restate, and we show that the set of regular values of the mapping which defines the equilibrium strategies is of full measure. Before we give one definition (see notably Debreu 1970; and Milnor 1997).

Definition 7

(Critical point, critical value, regular point, regular value) Let \(\textbf{F}:\mathcal {O}{\subset {\mathbb {R}} }^{n}\rightarrow { {\mathbb {R}} }^{m}\), \(\mathcal {O}\) open, be a differentiable vector function. A point \(\textbf{x}\in \mathcal {O}\) is a critical point of \(\textbf{F}\) at \(\textbf{x}\) if \(r(\mathcal {J}_{\textbf{F}}(\textbf{x}))<m\), where r is the rank of the Jacobian matrix \(\mathcal {J}_{\textbf{F}}(\textbf{x})\) of \(\textbf{F}\) at \(\textbf{x}\). A point \(\textbf{y}\in { {\mathbb {R}} }^{m}\) is a critical value of \(\textbf{F}\) if there a critical point \(\textbf{x}\in \mathcal {O}\) with \(\textbf{y}=\textbf{F}(\textbf{x})\). A point \(\textbf{x}\in \mathcal {O}\) (resp.\(\ \textbf{y}\in { {\mathbb {R}} }^{m}\)) is a regular point (resp. value) of \(\textbf{F}\) if \(\textbf{x}\) (resp.\(\ \textbf{F}\)) is not a critical point (resp. value).

Theorem 3

(Regular Value Theorem) Let \(\textbf{F}: {\mathbb {R}} ^{n}\rightarrow {\mathbb {R}} ^{m}\) be a \(C^{k}\) function. Let \(\textbf{y}\in {\mathbb {R}} ^{m}\) be a regular value of \(\textbf{F}\). Then, the preimage \(\textbf{F}^{-1}(\textbf{y})\) is a smooth manifold of \({\mathbb {R}} ^{n}\) of dimension \(n-m\).

Theorem 4

(Sard’s Theorem) Let \(\textbf{F}: {\mathbb {R}} ^{n}\rightarrow {\mathbb {R}} ^{m}\) be a \(C^{k}\) function, where \(k\geqslant \max (n-m+1,1)\). Let C be the set of critical points of \(\textbf{F}\), i.e., \(C=\{\textbf{x}\in {\mathbb {R}} ^{n}\mid \left| \mathcal {J}_{\textbf{F}_{\textbf{x}}}(\textbf{x} )\right| =0\}\). Then, the set of criticial values of \(\textbf{F }\) has Lebesgue measure zero in \({\mathbb {R}} ^{m}\), i.e., the set of regular values of \(\textbf{F}\) is dense in \({\mathbb {R}} ^{m}\).

Consider the subgame \(\Gamma _{L}\). Define the family of functions \({{\varvec{\Lambda }}}_{L}:{\mathcal {S}}^{L}\rightarrow {\mathcal {S}}^{L}\), with \({{\varvec{\Lambda }}}_{L}(\textbf{q}^{L},{{\varvec{\sigma }}}(\textbf{q}^{L};\textbf{b}^{L}); \textbf{b}^{L},{{\varvec{\varphi }}}(\textbf{q}^{L};\textbf{b}^{L}))={\times }_{i\in T_{X}^{L}}\phi _{i}{\times }_{j\in T_{Y}^{L}}\psi _{j}\) , where the smooth functions \(\phi _{i}\), for \(i\in T_{X}^{L}\), and \(\psi _{j}\), for \(j\in T_{Y}^{L}\), exist from Proposition 4 and Lemma 5, and the smooth vector valued functions \({{\varvec{\sigma }}}(\textbf{q}^{L};\textbf{b}^{L})\) and \({{\varvec{\varphi }}}(\textbf{q}^{L};\textbf{b}^{L})\) exist from Lemmas 1 and 5. To show that the set of equilibria of \(\Gamma _{L}\) is discrete, we rewrite the equilibrium conditions in \(\Gamma _{L}\) as follows. Define the function \(\Phi _{i}:\textbf{S}^{L}\rightarrow {\mathcal {S}}_{i}\), \(\Phi _{i}( \textbf{q}^{L};\textbf{b}^{L}):=q_{i}-\phi _{i}(\textbf{q} _{-i}^{L};\textbf{b}^{L})\), with \(\Phi _{i}(.)\in \mathcal {C} ^{\infty }\), \(i\in T_{X}^{L}\), and the function \(\Psi _{j}:\textbf{S} ^{L}\rightarrow {\mathcal {S}}_{j}\), \(\Psi _{j}(\textbf{q}^{L};\textbf{b} ^{L}):=b_{j}-\psi _{j}(\textbf{q}^{L};\textbf{b}^{L})\), with \(\Psi _{j}(.)\in \mathcal {C}^{\infty }\), \(j\in T_{Y}^{L}\). Consider the system of \(m_{X}+m_{Y}\) equations:

$$\begin{aligned} \left\{ \begin{array}{c} \Phi _{i}(\textbf{q}^{L};\textbf{b}^{L})=0\text {, }i\in T_{X}^{F}\text {,} \\ \\ \Psi _{j}(\textbf{q}^{L};\textbf{b}^{L})=0\text {, }j\in T_{Y}^{F}\text {.} \end{array} \right. \end{aligned}$$
(G1)

The system (G1) may be rewritten as

$$\begin{aligned} {{\varvec{\Upsilon }}}_{L}(\textbf{q}^{L};\textbf{b}^{L})=\textbf{0}\text {,} \end{aligned}$$
(G2)

where \({{\varvec{\Upsilon }}}:\textbf{S}^{L}\rightarrow \textbf{S}^{L}\), \({{\varvec{\Upsilon }}}(\textbf{q}^{L};\textbf{b}^{L})=(\Phi _{1},\ldots ,\Phi _{m_{X}};\Psi _{1},\ldots ,\Psi _{m_{Y}})\), with \({{\varvec{\Upsilon }}}_{L}(\textbf{ q}^{L};\textbf{b}^{L})\in \mathcal {C}^{\infty }\).

First, we show the differential \(d{{\varvec{\Upsilon }}}_{L}\) of the mapping \({{\varvec{\Upsilon }}}_{L}\) is surjective, which is equivalent to show that the Jacobian matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}}_{L}}\)of \({{\varvec{\Upsilon }}} _{L}\) at \((\textbf{q}^{L};\textbf{b}^{L})\) has rank \(m_{X}+m_{Y}\). This Jacobian matrix may be written:

$$\begin{aligned} \mathcal {J}_{{{\varvec{\Upsilon }}}_{L}}{ (}\textbf{q}^{L}{ ;} \textbf{b}^{L}{ )=}\left[ \begin{array}{cccc} 1 &{} -\frac{\partial \phi _{1}}{\partial q_{2}} &{} \cdots &{} -\frac{\partial \phi _{1}}{\partial b_{m_{Y}}} \\ -\frac{\partial \phi _{2}}{\partial q_{1}} &{} 1 &{} \cdots &{} -\frac{\partial \phi _{21}}{\partial b_{m_{Y}}} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ -\frac{\partial \psi _{m_{Y}}}{\partial q_{1}} &{} \ldots &{} -\frac{\partial \psi _{m_{Y}}}{\partial b_{m_{Y}-1}} &{} 1 \end{array} \right] \text {,} \end{aligned}$$
(G3)

and it has dimension \((m_{X}+m_{Y},m_{X}+m_{Y})\). To show that the matrix (G3) has rank \(m_{X}+m_{Y}\), it is sufficient to show that its off-diagonal elements are such that for each \(i\in T_{X}^{L}\), \(\frac{\partial \phi _{i} }{\partial q_{-i}}\ne -1\), \(-i\ne i\), \(-i\in T_{X}^{L}\), and \(\frac{ \partial \phi _{i}}{\partial b_{j}}\ne -1\), \(j\in T_{Y}^{L}\) (likewise, for each \(j\in T_{Y}^{L}\),\(\ \frac{\partial \psi _{j}}{\partial b_{-j}}\ne -1\), \(-j\ne j\), \(-j\in T_{Y}^{L}\), and \(\frac{\partial \psi _{j}}{\partial q_{i}}\ne -1\), \(i\in T_{X}^{L}\)). The result obtains by using a similar argument as the one used in Appendix B.Footnote 13 Then, the rows of the matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}} _{L}}(\textbf{q}^{L};\textbf{b}^{L})\) are linearly independent, so we have \(\left| \mathcal {J}_{{{\varvec{\Upsilon }}}_{L}}(\textbf{q}^{L};\textbf{b} ^{L})\right| \ne 0\). Then, the matrix \(\mathcal {J}_{{{\varvec{\Upsilon }}} _{L}}(\textbf{q}^{L};\textbf{b}^{L})\) has rank \(m_{X}+m_{Y}\). By the Regular Value Theorem, we deduce from the above that the set of solutions \(\mathcal {N}_{L}\) is a manifold of dimension zero, i.e., a set of isolated points. Then, the set \(\mathcal {N}_{L}\) of regular equilibria of \({\varvec{\Gamma }}_{L}\) is discrete. Second, we show that the set of critical equilibria is a null set. As \(\#T_{X}=m_{X}<\infty\), \(\#T_{Y}=m_{Y}<\infty\), and \({{\varvec{\Upsilon }}}_{L}\in \mathcal {C}^{\infty }\), then, from Sard’s Theorem, the set of critical equilibria is a null set. Then, as a complement of this set, the set of regular equilibria of \({\varvec{\Gamma }} _{L}\) is a dense set in the product space of strategy sets (it is of full measure set in \({\mathcal {S}}^{L}\)). Finally, as the smooth mapping \({{\varvec{\Upsilon }}}_{L}\) is proper (\({{\varvec{\Upsilon }}}_{L}^{-1}(A)\) is compact whenever \(A\subset {\mathcal {S}}^{L}\) is compact) , the set of critical equilibria of \({\varvec{\Gamma }}_{L}\) is closed.Footnote 14 Therefore, the set \(\mathcal {N}_{L}\) of regular equilibria of \({\varvec{\Gamma }}_{L}\) is open.

Consider now the subgame \({\varvec{\Gamma }}_{F}\), and let \((\tilde{\textbf{q} }^{L};\tilde{\textbf{b}}^{L})\) be a locally unique equilibrium of \(\Gamma _{L}\). Define \({\varvec{\Lambda }}_{F}:\textbf{S}\rightarrow \textbf{S}^{F}\), \({\varvec{\Lambda }}_{F}(\tilde{\textbf{q}}^{L},\textbf{q}^{F};\tilde{\textbf{b }}^{L},\textbf{b}^{F})={\times }_{i\in T_{X}^{F}}\phi _{i}{\times }_{j\in T_{Y}^{F}}\psi _{j}\), where \(\textbf{q}^{F}\in {{\varvec{\sigma }}}(\textbf{q}^{L};\textbf{b}^{L})\) and \(\textbf{b}^{F}\in {{\varvec{\varphi }}}( \textbf{q}^{L};\textbf{b}^{L})\). Then, as from Lemma 1, i.e., there exist unique \(\mathcal {C}^{\infty }\) functions \(b_{i,\epsilon }= \sigma _{i}^{\epsilon }(q_{\epsilon }^{L};b_{\epsilon }^{L};\epsilon )\), for \(i\in T_{X}^{F}\), and \(q_{j,\epsilon }= \varphi _{j}^{\epsilon }(q^{L};b^{L};\epsilon )\), for \(j\in T_{Y}^{F}\), and from Lemma 5, \((\textbf{q}^{F};\textbf{b}^{F}):=({{\varvec{\sigma }}}(\textbf{q}^{L};\textbf{b}^{L});{{\varvec{\varphi }}}(\textbf{q}^{L}; \textbf{b}^{L}))\) is a well-defined strategy profile of \({\varvec{\Gamma }} _{F}\), we deduce that the set of equilibria in \({\varvec{\Gamma }}_{F}\), i.e., the set of fixed points \((\tilde{\textbf{q}}^{F};\tilde{\textbf{b}}^{F})\) of \({\varvec{\Lambda }}_{F}(.)\), with \({\varvec{\Lambda }}_{F}(\tilde{\textbf{q}} ^{L},\textbf{q}^{F};\tilde{\textbf{b}}^{L},\textbf{b}^{F})={\times } _{i\in T_{X}^{F}}\phi _{i}{\times }_{j\in T_{Y}^{F}}\psi _{j}\), is discrete. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julien, L.A. Noncooperative oligopoly equilibrium in markets with hierarchical competition. Int J Game Theory (2023). https://doi.org/10.1007/s00182-023-00878-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00182-023-00878-9

Keywords

Mathematics Subject Classification

Navigation