Skip to main content
Log in

Cyclic dominance in a two-person rock–scissors–paper game

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

The Rock–scissors–paper game has been studied to account for cyclic behaviour under various game dynamics. We use a two-person parametrised version of this game. The cyclic behaviour is observed near a heteroclinic cycle, in a heteroclinic network, with two nodes such that, at each node, players alternate in winning and losing. This cycle is shown to be as stable as possible for a wide range of parameter values. The parameters are related to the players’ payoff when a tie occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Other dynamics in the RSP game can lead to stable isolated limit cycles yielding periodic oscillatory dynamics of all actions that favor long-term coexistence. See, for instance, Gaunersdörfer and Hofbauer (1995) with the extension to best response dynamics, and Mobilia (2010) and Toupo and Strogatz (2015) in the context of populations under mutations.

  2. Equilibria are sometimes called fixed points or steady states, and nodes in the context of heteroclinic dynamics.

  3. The superscript T indicates the transpose of a matrix in general.

  4. Step 1 has been made this simple by an anonymous reviewer whom we thank.

  5. We say that two square matrices of the same order, A and B, are similar if there exists an invertible matrix P such that \(B=P^{-1}AP\). In particular, similar matrices have the same characteristic polynomial. In this case, we have \(M_0^{-1}M^{(1)}M_0=M^{(0)}\).

  6. We thank an anonymous reviewer for pointing this similarity out to us.

  7. We are, in fact, interested in the non-zero-sum game corresponding to \(\varepsilon _x+\varepsilon _y\ne 0\).

  8. The second author and S. van Strien have work in preparation concerning this point.

References

  • Aguiar MAD, Castro SBSD (2010) Chaotic switching in a two-person game. Phys D 239(16):1598–1609

    Article  Google Scholar 

  • Arnold LG (2000) Stability of the market equilibrium in Romer’s model of endogenous technological change: a complete characterization. J Macroecon 22(1):69–84

    Article  Google Scholar 

  • Brannath W (1994) Heteroclinic networks on the tetrahedron. Nonlinearity 7(5):1367–1384

    Article  Google Scholar 

  • Field M (1996) Lectures on bifurcations, dynamics and symmetry. Pitman Research Notes in Mathematics Series, vol. 356, Longman

  • Garrido-da-Silva L (2018) Heteroclinic dynamics in game theory. PhD thesis, University of Porto

  • Garrido-da-Silva L, Castro SBSD (2019) Stability of quasi-simple heteroclinic cycles. Dyn Syst 34(1):14–39

    Article  Google Scholar 

  • Gaunersdörfer A, Hofbauer J (1995) Fictitious play, shapley polygons, and the replicator equation. Games Econ Behav 11:279–303

    Article  Google Scholar 

  • Golubitsky M, Stewart IN, Schaeffer DG (1988) Singularities and groups in bifurcation theory, vol 2. Springer, New York

    Book  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hofbauer J, Sorin S, Viossat Y (2009) Time average replicator and best reply dynamics. Math Oper Res 10(2):263–269

    Article  Google Scholar 

  • Hopkins E, Seymour RM (2002) The stability of price dispersion under seller and consumer learning. Int Econ Rev 43(4):1157–1190

    Article  Google Scholar 

  • Krupa M, Melbourne I (2004) Asymptotic stability of heteroclinic cycles in systems with symmetry II. Proc R Soc Edinburgh SectMath 134:1177–1197

    Article  Google Scholar 

  • Lohse A (2015) Stability of heteroclinic cycles in transverse bifurcations. Phys D 310:95–103

    Article  Google Scholar 

  • Melbourne I (1991) An example of a non-asymptotically stable attractor. Nonlinearity 4(3):835–844

    Article  Google Scholar 

  • Mobilia M (2010) Oscillatory dynamics in rock-paper-scissors games with mutations. J Theor Biol 264:1–10

    Article  Google Scholar 

  • Noel MD (2007) Edgeworth price cycles: evidence from the Toronto retail gasoline market. J Ind Econ 55(1):69–92

    Article  Google Scholar 

  • Olszowiec C (2016) Complex behaviour in cyclic competition bimatrix games ArXiv arXiv:1605.00431v4

  • Podvigina O (2012) Stability and bifurcations of heteroclinic cycles of type \(Z\). Nonlinearity 25(6):1887–1917

    Google Scholar 

  • Podvigina O, Ashwin P (2011) On local attraction properties and a stability index for heteroclinic connections. Nonlinearity 24(3):887–929

    Article  Google Scholar 

  • Sato Y, Akiyama E, Crutchfield JP (2005) Stability and diversity in collective adaptation. Phys D 210(12):21–57

    Article  Google Scholar 

  • Sato Y, Akiyama E, Farmer JD (2002) Chaos in learning a simple two-person game. Proc Natl Acad Sci 99(7):4748–4751

    Article  Google Scholar 

  • Sigmund K (2011) Introduction to evolutionary game theory. Proc Symp Appl Math 69:21–57

    Google Scholar 

  • van Strien S, Sparrow C (2011) Fictitious play in \(3 \times 3\) games: chaos and dithering behaviour. Games Econ Behav 73:262–286

    Google Scholar 

  • Szolnoki A, Mobilia M, Jiang L-L, Szczesny B, Rucklidge AM, Perc M (2014) Cyclic dominance in evolutionary games: a review. J R Soc Interface 11:20140735

    Article  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156

    Article  Google Scholar 

  • Toupo DFP, Strogatz SH (2015) Nonlinear dynamics of the rock-paper-scissors game with mutations. Phys Rev E 91:052907

    Article  Google Scholar 

  • Varian H (1980) A model of sales. Am Econ Rev 70:651–659

    Google Scholar 

  • Zeeman EC (1980) Population dynamics from game theory. In: Nitecki Z, Robinson C (eds) Global theory of dynamical systems. Lecture Notes in Mathematics, vol. 819. Springer, Berlin

Download references

Acknowledgements

The second author is grateful to A. Rucklidge for an interesting conversation. The two authors were partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER), under the partnership agreement PT2020. L. Garrido-da-Silva is the recipient of the doctoral grant PD/BD/105731/2014 from FCT (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia B. S. D. Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Transitions near the RSP cycles

In this section we describe the construction of Poincaré maps (also called return maps) from and to cross sections of the flow near each node once around an entire heteroclinic cycle. The Poincaré maps are the composition of local and global maps. The local maps approximate the flow in a neighbourhood of a node. The global maps approximate the flow along a heteroclinic connection between two consecutive nodes.

Near \(\xi _j\) we introduce an incoming section \(H_{j}^{in,i}\) across the heteroclinic connection \(\left[ \xi _{i}\rightarrow \xi _{j}\right] \) and an outgoing section \(H_{j}^{out,k}\) across the heteroclinic connection \(\left[ \xi _{j}\rightarrow \xi _{k}\right] \), \(j \ne i,k\). By definition, these are five-dimensional subspaces in \({\mathbb {R}}^6\). Krupa and Melbourne (2004) have shown that not all dimensions are important in the study of stability of heteroclinic cycles as follows.

1.1 Poincaré maps

Assume that the flow is linearisable about each node (see Proposition 4.1. in Aguiar and Castro (2010) for detailed conditions). Locally at \(\xi _j\), we denote by \(-c_{ji}<0\) the eigenvalue in the stable direction through the heteroclinic connection \(\left[ \xi _{i}\rightarrow \xi _{j}\right] \) and \(e_{jk}>0\) the eigenvalue in the unstable direction through the heteroclinic connection \(\left[ \xi _{j}\rightarrow \xi _{k}\right] \). As illustrated in Fig. 4a each node has two incoming connections and two outgoing connections. Looking at \(\xi _j\) from the point of view of the sequence of heteroclinic connections \(\left[ \xi _i\rightarrow \xi _j\rightarrow \xi _k\right] \), we say that \(-c_{ji}\) is contracting, \(e_{jk}\) is expanding, \(-c_{jl}\) and \(e_{jm}\) are transverse with \(j \ne i,k,l,m\), \(i \ne l\) and \(k \ne m\) (see Garrido-da-Silva and Castro 2019; Krupa and Melbourne 2004; Podvigina 2012; Podvigina and Ashwin 2011).

Fig. 4
figure 4

Representation of a the eigenvalues and b the cross sections near a node \(\xi _j\) with \(j \ne i,k,l,m\), \(i \ne l\) and \(k \ne m\)

The linearised flow in the relevant local coordinates near \(\xi _j\) is given by

$$\begin{aligned} \begin{aligned} {\dot{v}}&= \; -c_{ji}v\\ {\dot{w}}&= \; e_{jk}w\\ {\dot{z}}_{1}&= \; -c_{jl}z_{1}\\ {\dot{z}}_{2}&= \; e_{jm}z_{2}, \end{aligned} \end{aligned}$$
(10)

such that v, w and \((z_1,z_2)\) correspond, respectively, to the contracting, expanding and transverse directions. Table 2 provides all eigenvalues restricted to these directions for the three nodes \(\xi _0\), \(\xi _1\) and \(\xi _2\).

All cross sections are reduced to a three-dimensional subspace and can be expressed as (see Fig. 4b)

$$\begin{aligned} \begin{aligned} H_{j}^{in,i}&=\left\{ \left( 1,w,z_{1},z_{2}\right) :\; 0 \le w,z_{1},z_{2}<1\right\} \\ H_{j}^{out,k}&=\left\{ \left( v,1,z_{1},z_{2}\right) :\; 0\le v,z_{1},z_{2}<1\right\} . \end{aligned} \end{aligned}$$

We construct local maps \(\phi _{ijk}:H_{j}^{in,i}\rightarrow H_{j}^{out,k}\) near each \(\xi _j\), global maps \(\psi _{jk}:H_{j}^{out,k}\rightarrow H_{k}^{in,j}\) near each heteroclinic connection \(\left[ \xi _{j}\rightarrow \xi _{k}\right] \), and their compositions \(g_{j}=\psi _{jk} \circ \phi _{ijk}:H_{j}^{in,i}\rightarrow H_{k}^{in,j}\), \(j \ne i,k\). Composing the latter successively along an entire heteroclinic cycle yields the Poincaré maps \(\pi _j:H_j^{in,i} \rightarrow H_{j}^{in,i}\), one for each heteroclinic connection belonging to the heteroclinic cycle.

Integrating (10) we find

$$\begin{aligned} \phi _{ijk}\left( w,z_{1},z_{2}\right) =\left( w^{{\textstyle \frac{c_{ji}}{e_{jk}}}},\; z_{1}w^{{\textstyle \frac{c_{jl}}{e_{jk}}}},\; z_{2}w^{-{\textstyle \frac{e_{jm}}{e_{jk}}}}\right) , \quad \text {for }0<z_2<w^{\textstyle \frac{e_{jm}}{e_{jk}}}. \end{aligned}$$
Table 2 Eigenvalues of the linearisation of the flow about each node in a system of local coordinates in the basis of the associated contracting, expanding and transverse eigenvectors

On the other hand, expressions for global maps depend both on which heteroclinic connection and heteroclinic cycle one considers. Following the Remark on p. 1603 of Aguiar and Castro (2010), in the leading order any global map \(\psi _{jk}\) is well represented by a permutation.

We describe the details for the cycle \(C_0=\left[ \xi _0\rightarrow \xi _1\rightarrow \xi _0\right] \). The other cases are similar, and therefore, we omit the calculations. Notice that

$$\begin{aligned} \Gamma \left( (\text {R},\text {P}) \rightarrow (\text {S},\text {P}) \rightarrow (\text {S},\text {R}) \right) =C_0. \end{aligned}$$

We pick, respectively, the heteroclinic connections \(\left[ (\text {R},\text {P}) \rightarrow (\text {S},\text {P}) \right] \) and\(\left[ (\text {S},\text {P}) \rightarrow (\text {S},\text {R}) \right] \) as representatives of \(\left[ \xi _0 \rightarrow \xi _1\right] \) and \(\left[ \xi _1 \rightarrow \xi _0\right] \), see Table 1. Considering the flow linearised about each representative heteroclinic connection the global maps have the form

$$\begin{aligned} \begin{aligned} \psi _{01}:\,&H_{0}^{out,1} \rightarrow H_{1}^{in,0}, \quad&\psi _{10} \left( v,z_1,z_2\right)&=\left( z_1,z_2,v\right) \\ \psi _{10}:\,&H_{1}^{out,0} \rightarrow H_{0}^{in,1}, \quad&\psi _{01} \left( v,z_1,z_2\right)&=\left( z_1,z_2,v\right) . \end{aligned} \end{aligned}$$

The pairwise composite maps \(g_{0}=\psi _{01} \circ \phi _{101}\) and \(g_{1}=\psi _{10} \circ \phi _{010}\) are

$$\begin{aligned} \begin{aligned} g_{0}:\,&H_{0}^{in,1} \rightarrow H_{1}^{in,0}, \quad&g_{0}\left( w,z_1,z_2\right)&= \left( z_{1}w^{{\textstyle \frac{1-\varepsilon _y}{2}}},\; z_{2}w^{-{\textstyle \frac{1+\varepsilon _x}{2}}}, \; w \right) , \\&\text {for }&0<z_{2}<w^{\textstyle \frac{1+\varepsilon _x}{2}}, \\ g_{1}:&H_{1}^{in,0} \rightarrow H_{0}^{in,1}, \quad&g_{1}\left( w,z_1,z_2\right)&= \left( z_{1}w^{{\textstyle \frac{1-\varepsilon _x}{2}}},\; z_{2}w^{-{\textstyle \frac{1+\varepsilon _y}{2}}},\; w \right) , \\&\text {for }&0<z_{2}<w^{\textstyle \frac{1+\varepsilon _y}{2}}. \end{aligned} \end{aligned}$$
(11)

The dynamics in the vicinity of the \(C_0\)-cycle is accurately approximated by the two Poincaré maps \(\pi _{0}=g_{1} \circ g_{0}\) and \(\pi _{1}=g_{0} \circ g_{1}\) with

$$\begin{aligned} \begin{aligned} \pi _{0}&: H_{0}^{in,1} \rightarrow H_{0}^{in,1}, \\ \pi _{0}&\left( w,z_1,z_2\right) = \left( z_2 z_{1}^{\textstyle \frac{1-\varepsilon _x}{2}}w^{\textstyle \frac{-1-3\varepsilon _x-\varepsilon _y+\varepsilon _x \varepsilon _y}{4}},\; z_{1}^{-{\textstyle \frac{1+\varepsilon _y}{2}}}w^{\textstyle \frac{3+\varepsilon _y^2}{4}}, \; z_1 w^{\textstyle \frac{1-\varepsilon _y}{2}} \right) , \end{aligned} \end{aligned}$$
(12)

for \(0<z_{2}<w^{\textstyle \frac{1+\varepsilon _x}{2}}\) and \(z_1>w^{\textstyle \frac{3+\varepsilon _y^2}{2\left( 1+\varepsilon _y\right) }}\),

$$\begin{aligned} \begin{aligned} \pi _{1}&: H_{1}^{in,0} \rightarrow H_{1}^{in,0}, \\ \pi _{1}&\left( w,z_1,z_2\right) = \left( z_2 z_{1}^{\textstyle \frac{1-\varepsilon _y}{2}}w^{\textstyle \frac{-1-\varepsilon _x-3\varepsilon _y+\varepsilon _x \varepsilon _y}{4}},\; z_{1}^{-{\textstyle \frac{1+\varepsilon _x}{2}}}w^{\textstyle \frac{3+\varepsilon _y^2}{4}}, \; z_1 w^{\textstyle \frac{1-\varepsilon _x}{2}} \right) , \end{aligned} \end{aligned}$$
(13)

for \(0<z_{2}<w^{\textstyle \frac{1+\varepsilon _y}{2}}\) and \(z_1>w^{\textstyle \frac{3+\varepsilon _x^2}{2\left( 1+\varepsilon _x\right) }}\).

1.2 Transition matrices

Consider the change of coordinates

$$\begin{aligned} \varvec{\eta }\equiv \left( \eta _{1},\eta _{2},\eta _{3}\right) =\left( \ln v,\ln z_{1},\ln z_{2} \right) . \end{aligned}$$
(14)

The maps \(g_{j}:H_j^{in,i}\rightarrow H_k^{in,j}\), \(j \ne i,k\), become linear

$$\begin{aligned} g_j\left( \varvec{\eta }\right) =M_j \varvec{\eta } \end{aligned}$$

and \(M_j\) are called the basic transition matrices. For the Poincaré maps \(\pi _j:H_j^{in,i} \rightarrow H_j^{in,i}\) the transition matrices are the product of basic transition matrices in the appropriate order. We denote them by \(M^{(j)}\).

The basic transition matrices of the maps \(g_0\) and \(g_1\) in (11) with respect to \(C_0\) are

$$\begin{aligned} M_{0} =\left[ \begin{array}{ccc} \dfrac{1-\varepsilon _y}{2} &{} 1 &{} 0\\ -\dfrac{1+\varepsilon _x}{2} &{} 0 &{} 1\\ 1 &{} 0 &{} 0 \end{array}\right] , \; \; \; \; M_{1} =\left[ \begin{array}{ccc} \dfrac{1-\varepsilon _x}{2} &{} 1 &{} 0\\ -\dfrac{1+\varepsilon _y}{2} &{} 0 &{} 1\\ 1 &{} 0 &{} 0 \end{array}\right] . \end{aligned}$$

Then, the products \(M^{(0)}=M_1 M_0\) and \(M^{(1)}=M_0 M_1\) provide the transition matrices (see Fig. 5) of the Poincaré maps \(\pi _0\) in (12) and \(\pi _1\) in (13):

$$\begin{aligned} \begin{aligned} M^{(0)}&=\left[ \begin{array}{ccc} \dfrac{-1-3\varepsilon _x-\varepsilon _y+\varepsilon _x\varepsilon _y}{4} &{} \dfrac{1-\varepsilon _x}{2} &{} 1\\ \dfrac{3+\varepsilon _y^2}{4} &{} -\dfrac{1+\varepsilon _y}{2} &{} 0\\ \dfrac{1-\varepsilon _y}{2} &{} 1 &{} 0 \end{array}\right] \\ M^{(1)}&=\left[ \begin{array}{ccc} \dfrac{-1-\varepsilon _x-3\varepsilon _y+\varepsilon _x\varepsilon _y}{4} &{} \dfrac{1-\varepsilon _y}{2} &{} 1\\ \dfrac{3+\varepsilon _x^2}{4} &{} -\dfrac{1+\varepsilon _x}{2} &{} 0\\ \dfrac{1-\varepsilon _x}{2} &{} 1 &{} 0 \end{array}\right] . \end{aligned} \end{aligned}$$
(15)
Fig. 5
figure 5

Definition of the transition matrices a \(M^{(0)}=M_1M_0\) and b \(M^{(1)}=M_0M_1\) around the \(C_0\)-cycle. The matrix \(M_0\) corresponds to the transformation represented by a dotted line and \(M_1\) to that represented by a dashed line

Analogously, this process yields the transition matrices for the remaining heteroclinic cycles. We use different accents according to the heteroclinic cycle: for \(C_1\),

$$\begin{aligned} \begin{aligned} {\widetilde{M}}^{(1)}:\,&H_1^{in,2} \rightarrow H_1^{in,2}, \quad&{\widetilde{M}}^{(1)}&= {\widetilde{M}}_2 {\widetilde{M}}_1\\ {\widetilde{M}}^{(2)}:\,&H_2^{in,1} \rightarrow H_2^{in,1}, \quad&{\widetilde{M}}^{(2)}&={\widetilde{M}}_1 {\widetilde{M}}_2 \end{aligned} \end{aligned}$$

where

$$\begin{aligned} {\widetilde{M}}_{1} =\left[ \begin{array}{ccc} \dfrac{2}{1+\varepsilon _y} &{} 1 &{} 0\\ \dfrac{1-\varepsilon _x}{1+\varepsilon _y} &{} 0 &{} 0\\ -\dfrac{2}{1+\varepsilon _y} &{} 0 &{} 1 \end{array}\right] , \; \; \; \; {\widetilde{M}}_{2} =\left[ \begin{array}{ccc} -\dfrac{1-\varepsilon _y}{1-\varepsilon _x} &{} 0 &{} 1\\ \dfrac{1+\varepsilon _x}{1-\varepsilon _x} &{} 1 &{} 0\\ \dfrac{1+\varepsilon _y}{1-\varepsilon _x} &{} 0 &{} 0 \end{array}\right] ; \end{aligned}$$

for \(C_2\),

$$\begin{aligned} \begin{aligned} \widetilde{{\widetilde{M}}}^{(0)}:&H_0^{in,2} \rightarrow H_0^{in,2}, \quad&\widetilde{{\widetilde{M}}}^{(0)}&= \widetilde{{\widetilde{M}}_2} \widetilde{{\widetilde{M}}_0}\\ \widetilde{{\widetilde{M}}}^{(2)}:&H_2^{in,0} \rightarrow H_2^{in,0}, \quad&\widetilde{{\widetilde{M}}}^{(2)}&= \widetilde{{\widetilde{M}}_0} \widetilde{{\widetilde{M}}_2} \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \widetilde{{\widetilde{M}}_{0}} =\left[ \begin{array}{ccc} \dfrac{2}{1+\varepsilon _x} &{} 1 &{} 0\\ \dfrac{1-\varepsilon _y}{1+\varepsilon _x} &{} 0 &{} 0\\ -\dfrac{2}{1+\varepsilon _x} &{} 0 &{} 1 \end{array}\right] , \; \; \; \; \widetilde{{\widetilde{M}}_{2}} =\left[ \begin{array}{ccc} -\dfrac{1-\varepsilon _x}{1-\varepsilon _y} &{} 0 &{} 1\\ \dfrac{1+\varepsilon _y}{1-\varepsilon _y} &{} 1 &{} 0\\ \dfrac{1+\varepsilon _x}{1-\varepsilon _y} &{} 0 &{} 0 \end{array}\right] ; \end{aligned}$$

for \(C_3\),

$$\begin{aligned} \begin{aligned} {\widehat{M}}^{(1)}:\,&H_1^{in,0} \rightarrow H_1^{in,0}, \quad&{\widehat{M}}^{(1)}&= {\widehat{M}}_2 {\widehat{M}}_0 {\widehat{M}}_1\\ {\widehat{M}}^{(2)}:\,&H_2^{in,1} \rightarrow H_2^{in,1}, \quad&{\widehat{M}}^{(2)}&={\widehat{M}}_0 {\widehat{M}}_1 {\widehat{M}}_2\\ {\widehat{M}}^{(0)}:\,&H_0^{in,2} \rightarrow H_0^{in,2}, \quad&{\widehat{M}}^{(0)}&={\widehat{M}}_1 {\widehat{M}}_2 {\widehat{M}}_0 \end{aligned} \end{aligned}$$

where

$$\begin{aligned} {\widehat{M}}_{1} =\left[ \begin{array}{ccc} -\dfrac{2}{1+\varepsilon _y} &{} 0 &{} 1\\ \dfrac{1-\varepsilon _x}{1+\varepsilon _y} &{} 1 &{} 0\\ \dfrac{2}{1+\varepsilon _y} &{} 0 &{} 0 \end{array}\right] , \; \; \; \; {\widehat{M}}_{2} =\left[ \begin{array}{ccc} \dfrac{1+\varepsilon _x}{1-\varepsilon _y} &{} 1 &{} 0\\ \dfrac{1+\varepsilon _y}{1-\varepsilon _y} &{} 0 &{} 0\\ -\dfrac{1-\varepsilon _x}{1-\varepsilon _y} &{} 0 &{} 1 \end{array}\right] , \; \; \; \; {\widehat{M}}_{0} =\left[ \begin{array}{ccc} 1 &{} 1 &{} 0\\ -\dfrac{1+\varepsilon _x}{2} &{} 0 &{} 1\\ \dfrac{1-\varepsilon _y}{2} &{} 0 &{} 0 \end{array}\right] ; \end{aligned}$$

and, for \(C_4\),

$$\begin{aligned} \begin{aligned} {\widehat{\widehat{M}}}^{(0)}:&H_0^{in,1} \rightarrow H_0^{in,1}, \quad&{\widehat{\widehat{M}}}^{(0)}&= {\widehat{\widehat{M}}_2} {\widehat{\widehat{M}}_1} {\widehat{\widehat{M}}_0}\\ {\widehat{\widehat{M}}}^{(2)}:&H_2^{in,0} \rightarrow H_2^{in,0}, \quad&{\widehat{\widehat{M}}}^{(2)}&= {\widehat{\widehat{M}}_1} {\widehat{\widehat{M}}_0} {\widehat{\widehat{M}}_2}\\ {\widehat{\widehat{M}}}^{(1)}:&H_1^{in,2} \rightarrow H_1^{in,2}, \quad&{\widehat{\widehat{M}}}^{(1)}&= {\widehat{\widehat{M}}_0} {\widehat{\widehat{M}}_2} {\widehat{\widehat{M}}_1} \end{aligned} \end{aligned}$$

where

$$\begin{aligned} {\widehat{\widehat{M}}}_{0} =\left[ \begin{array}{ccc} -\dfrac{2}{1+\varepsilon _x} &{} 0 &{} 1\\ \dfrac{1-\varepsilon _y}{1+\varepsilon _x} &{} 1 &{} 0\\ \dfrac{2}{1+\varepsilon _x} &{} 0 &{} 0 \end{array}\right] , \; \; \; \; {\widehat{\widehat{M}}_{2}} =\left[ \begin{array}{ccc} \dfrac{1+\varepsilon _y}{1-\varepsilon _x} &{} 1 &{} 0\\ \dfrac{1+\varepsilon _x}{1-\varepsilon _x} &{} 0 &{} 0\\ -\dfrac{1-\varepsilon _y}{1-\varepsilon _x} &{} 0 &{} 1 \end{array}\right] , \; \; \; \; {\widehat{\widehat{M}}_{1}} =\left[ \begin{array}{ccc} 1 &{} 1 &{} 0\\ -\dfrac{1+\varepsilon _y}{2} &{} 0 &{} 1\\ \dfrac{1-\varepsilon _x}{2} &{} 0 &{} 0 \end{array}\right] . \end{aligned}$$

The stability index

Each Poincaré map \(\pi _j:{\mathbb {R}}^3\rightarrow {\mathbb {R}}^3\) induces a discrete dynamical system through the relation \({\varvec{x}}_{k+1}=\pi _j \left( {\varvec{x}}_k\right) \), where \({\varvec{x}}_k=\left( w_k,z_{1,k},z_{2,k}\right) \) denotes the state at the discrete time k. The stability of a heteroclinic cycle then follows from the stability of the fixed point at the origin of Poincaré maps around the former.

As in Podvigina (2012) and Podvigina and Ashwin (2011), for \(\delta >0\) let \({{{\mathcal {B}}}}_{\delta }^{\pi _j}\) be the \(\delta \)-local basin of attraction of \({\varvec{0}}\in {\mathbb {R}}^3\) for the map \(\pi _j\). Roughly speaking, \({{{\mathcal {B}}}}_{\delta }^{\pi _j}\) is the set of all initial conditions near \(\xi _j\) whose trajectories remain in a \(\delta \)-neighbourhood of the heteroclinic cycle and converge to it.

We use \(\left\| \cdot \right\| \) to express Euclidean norm on \({\mathbb {R}}^3\). Taking, for example, the Poincaré map \(\pi _0\) in (12) with respect to the \(C_0\)-cycle the local basin \({{{\mathcal {B}}}}_{\delta }^{\pi _0}\) is defined to be

$$\begin{aligned} \begin{aligned} {{{\mathcal {B}}}}_{\delta }^{\pi _0}=\Big \{ {\varvec{x}} \in {\mathbb {R}}^3 :&\left\| \pi _0^k({\varvec{x}}) \right\|< \delta , \; \left\| g_0 \circ \pi _0^k({\varvec{x}}) \right\| < \delta \text { for all } k\in {\mathbb {N}}_0 \\ \text { and }&\lim _{k \rightarrow \infty } \left\| \pi _0^k({\varvec{x}})\right\| = 0, \; \lim _{k \rightarrow \infty } \left\| g_0 \circ \pi _0^k({\varvec{x}})\right\| = 0 \Big \}. \end{aligned} \end{aligned}$$
(16)

In the new coordinates \(\varvec{\eta }\) (14) the origin in \({\mathbb {R}}^3\) becomes \(-\varvec{\infty }\). For asymptotically small \({\varvec{x}}=\left( w,z_1,z_2\right) \in {{{\mathcal {B}}}}_{\delta }^{\pi _j}\) the requirement (as in (16)) that the iterates \(\pi _j^k({\varvec{x}})\) approach \({\varvec{0}}\) (hence the heteroclinic cycle) as \(k\rightarrow \infty \) corresponds to all asymptotically large negative \(\varvec{\eta }\) such that

$$\begin{aligned} \lim _{k\rightarrow \infty } \left( M^{(j)}\right) ^k\varvec{\eta }=-\varvec{\infty }. \end{aligned}$$
(17)

For \(M=M^{(j)}\) we denote the set of points satisfying (17) by \(U^{-\infty }\left( M\right) \). Lemma 3 in Podvigina (2012), together with its reformulation as Lemma 3.2 in Garrido-da-Silva and Castro (2019), provide necessary and sufficient conditions for \(U^{-\infty }\left( M\right) \) having a positive measure. The conditions depend on the dominant eigenvalue and the associated eigenvector of M. We transcribe the result in its useful form in the following

Lemma B.1

(adapted from Lemma 3 in Podvigina (2012)). Let \(\lambda _{\max }\) be the maximum, in absolute value, eigenvalue of the matrix \(M:{\mathbb {R}}^N \rightarrow {\mathbb {R}}^N\) and \({\varvec{w}}^{\max }=\left( w_1^{\max },\ldots ,w_N^{\max }\right) \) be an associated eigenvector. Suppose \(\lambda _{\max } \ne 1\). The measure \(\ell \left( U^{-\infty }(M)\right) \) is positive if and only if the three following conditions are satisfied:

  1. (i)

    \(\lambda _{\max }\) is real;

  2. (ii)

    \(\lambda _{\max }>1\);

  3. (iii)

    \(w_{l}^{\max }w_{q}^{\max }>0\) for all \(l,q=1,\ldots N\).

1.1 The function \(F^\mathrm{{index}}\)

The function \(F^{\text {index}}:{\mathbb {R}}^N \rightarrow {\mathbb {R}}\) used to calculate the stability indices along heteroclinic connections is constructed in Garrido-da-Silva and Castro (2019).

For \(N=3\) and any nonzero \(\varvec{\alpha }=\left( \alpha _1,\alpha _2,\alpha _3\right) \in {\mathbb {R}}^3\) denote \(\alpha _{\min }=\min \left\{ \alpha _1,\alpha _2,\alpha _3\right\} \) and \(\alpha _{\max }=\max \left\{ \alpha _1,\alpha _2,\alpha _3\right\} \). From Appendix A.1 in Garrido-da-Silva and Castro (2019) we have

$$\begin{aligned} F^{\text {index}}(\varvec{\alpha })=F^{+}(\varvec{\alpha })-F^{-}(\varvec{\alpha }) \end{aligned}$$

with \(F^{-}(\varvec{\alpha })=F^{+}(-\varvec{\alpha })\) where

$$\begin{aligned} F^{+}(\varvec{\alpha })= {\left\{ \begin{array}{ll} +\infty , &{} \text {if }\alpha _{\min } \ge 0\\ 0, &{} \text {if }\alpha _{1}+\alpha _{2}+\alpha _{3}\le 0\\ -\dfrac{\alpha _{1}+\alpha _{2}+\alpha _{3}}{\alpha _{\min }}, &{} \text {if }\alpha _{\min } <0\text { and }\alpha _{1}+\alpha _{2}+\alpha _{3}\ge 0, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} F^{-}\left( \varvec{\alpha }\right) = {\left\{ \begin{array}{ll} +\infty , &{} \text {if }\alpha _{\max } \le 0\\ 0, &{} \text {if }\alpha _{1}+\alpha _{2}+\alpha _{3}\ge 0\\ -\dfrac{\alpha _{1}+\alpha _{2}+\alpha _{3}}{\alpha _{\max }}, &{} \text {if }\alpha _{\max } >0\text { and }\alpha _{1}+\alpha _{2}+\alpha _{3}\le 0. \end{array}\right. } \end{aligned}$$

It then follows that

$$\begin{aligned} F^{\text {index}}\left( \varvec{\alpha }\right) = {\left\{ \begin{array}{ll} +\infty , &{} \text {if }\alpha _{\min } \ge 0\\ -\infty , &{} \text {if }\alpha _{\max } \le 0\\ 0, &{} \text {if }\alpha _{1}+\alpha _{2}+\alpha _{3}=0\\ \dfrac{\alpha _{1}+\alpha _{2}+\alpha _{3}}{\alpha _{\max }}, &{} \text {if }\alpha _{\max }>0\text { and }\alpha _{1}+\alpha _{2}+\alpha _{3}<0\\ -\dfrac{\alpha _{1}+\alpha _{2}+\alpha _{3}}{\alpha _{\min }}, &{} \text {if }\alpha _{\min } <0\text { and }\alpha _{1}+\alpha _{2}+\alpha _{3}>0. \end{array}\right. } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido-da-Silva, L., Castro, S.B.S.D. Cyclic dominance in a two-person rock–scissors–paper game. Int J Game Theory 49, 885–912 (2020). https://doi.org/10.1007/s00182-020-00706-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-020-00706-4

Keywords

JEL Classification

Navigation