Skip to main content
Log in

Sparse estimation of linear model via Bayesian method\(^*\)

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arslan O (2010) An alternative multivariate skew laplace distribution: properties and estimation. Stat Papers 51(4):865–887

    Article  MathSciNet  Google Scholar 

  • Bai R, Ghosh M (2018) High-dimensional multivariate posterior consistency under global-local shrinkage priors. J Multivar Anal 167(3):157–170

    Article  MathSciNet  Google Scholar 

  • Bhadra A, Datta J, Polson NG, Willard B (2016) Default Bayesian analysis with global-local shrinkage priors. Biometrika 103(4):955–969

    Article  MathSciNet  Google Scholar 

  • Bhadra A, Datta J, Polson NG, Willard B (2017) The horseshoe+ estimator of ultra-sparse signals. Bayesian Anal 12(4):1105–1131

    Article  MathSciNet  Google Scholar 

  • Carvalho CM, Polson NG, Scott JG (2010) The horseshoe estimator for sparse signals. Biometrika 97(2):465–480

    Article  MathSciNet  Google Scholar 

  • Efron B, Hastie TJ, Johnstone IM, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via gibbs sampling. J Am Stat Assoc 88(423):881–889

    Article  Google Scholar 

  • Ishwaran BHJ, Rao S (2005) Spike and slab variable selection: frequentist and Bayesian strategies. Ann Stat 33(2):730–773

    Article  MathSciNet  Google Scholar 

  • Ishwaran H, Kogalur UB, Rao JS (2010) spikeslab: Prediction and variable selection using spike and slab regression. R J 2(2)

  • Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Am Stat Assoc 83(404):1023–1032

    Article  MathSciNet  Google Scholar 

  • Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103(482):681–686

    Article  MathSciNet  CAS  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B Stat Methodol 58(1):267–288

    MathSciNet  Google Scholar 

  • Vavrek MJ (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron 14(1):16

    Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  MathSciNet  CAS  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc Ser B Stat Methodol 67(2):301–320

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and the reviewers for their valuable comments and suggestions which have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NNSF of China (11371051).

Appendix

Appendix

The more details about the Gibbs sampling of the horseshore+ prior model as follows:

From the joint posterior (2.7), it is easy to obtain

$$\begin{aligned} \varvec{\beta }\big | \varvec{\lambda }, \varvec{\eta }, \tau , \sigma ^2 \sim MVN(\mu _n,\sigma ^2{\mathrm {\Lambda }_n}^{-1}), \end{aligned}$$

where \(\mu _n={\mathrm {\Lambda }_n}^{-1}X^\prime \varvec{y}\), \(\ \mathrm {\Lambda }_n=X^\prime X+\mathrm {\Lambda }_0\) and \(\mathrm {\Lambda }_0^{-1}=\tau ^2\) diag\(\{{\lambda _i}^2{\eta _i}^2\}\) with diag\(\{.\}\) being the diagonal matrix whose elements are \({\lambda _i}^2{\eta _i}^2(i=1,...,p)\).

And, for the parameter \(\tau\) we have

$$\begin{aligned} p_8\left( \tau |\varvec{\lambda },\varvec{\eta },\sigma ^2,\varvec{\beta }\right)&\propto p_5\left( \varvec{\beta }|\varvec{\lambda },\varvec{\eta },\tau ,\sigma ^2\right) p_2\left( \tau \right) \\&=\frac{1}{\sqrt{\left( 2\pi \right) ^p\left| \mathrm {\Sigma }_{\varvec{\beta }}\right| }} \exp \left\{ -\frac{1}{2}\varvec{\beta }^\prime {\mathrm {\Sigma }_{\varvec{\beta }}^{-1} \varvec{\beta }}\right\} \frac{2}{\pi (1+\tau ^2)}\\&\propto \ \frac{1}{\tau ^p}\exp \left\{ -\frac{1}{2} \varvec{\beta }^\prime {\mathrm {\Sigma }_{\varvec{\beta }}}^{-1}\varvec{\beta }\right\} \frac{1}{1+\tau ^2}\\&=\frac{1}{\tau ^p}\exp \left\{ -\frac{1}{2\sigma ^2\tau ^2}\sum _{i=1}^{p} \frac{{\beta _i}^2}{{\eta _i}^2{\lambda _i}^2}\right\} \frac{1}{1+\tau ^2}, \end{aligned}$$

where \(\mathrm {\Sigma }_{\varvec{\beta }}=\sigma ^2{\mathrm {\Lambda }_0}^{-1}\).

Let \(\gamma =\frac{1}{\tau ^2}\). Together with the above formula we obtain

$$\begin{aligned} p_9(\gamma | \varvec{\lambda }, \varvec{\eta }, \sigma ^2, \varvec{\beta } ) \propto \exp \left\{ -\frac{1}{2\sigma ^2}\left( \sum _{i=1}^{p}\frac{{\beta _i}^2}{{\eta _i}^2{\lambda _i}^2}\right) \gamma \right\} \frac{\gamma ^\frac{p-1}{2}}{\gamma +1}. \end{aligned}$$

Let \({\widetilde{\mu }}^2=\sum _{i=1}^{p}\left( \frac{\beta _i}{\lambda _i\eta _i\sigma }\right) ^2\). Using the uniform distribution, we can employ the following sampling steps to generate \(\gamma\), i.e.,

$$\begin{aligned} u_{11} \sim U\left( 0,~\left( 1+\gamma \right) ^{-1}\right) \end{aligned}$$

and

$$\begin{aligned} \gamma |\varvec{\lambda },\varvec{\eta },\sigma ^2,\varvec{\beta }~ \sim Ga\left( \frac{1}{2}\left( p+1\right) ,\frac{1}{2}{\widetilde{\mu }}^2\right) I\left( \gamma <\frac{1-u_{11}}{u_{11}}\right) , \end{aligned}$$

where \(I(\cdot )\) is the indicator function.

For \(\eta _i\), we have

$$\begin{aligned} p_{10}\left( \eta _i |\lambda _i, \tau , \sigma ^2,\beta _i\right)&\propto p_{11}\left( \beta _i|\lambda _i,\eta _i,\tau ,\sigma ^2\right) p_4\left( \eta _i\right) \nonumber \\&\propto \frac{1}{\eta _i}\exp \left\{ \frac{-{\beta _i}^2}{2\sigma ^2\tau ^2{\eta _i}^2{\lambda _i}^2} \right\} \frac{1}{1+{\eta _i}^2}. \end{aligned}$$

Let  \(\vartheta _i=\frac{1}{{\eta _i}^2}\), then \(\eta _i={\vartheta _i}^{-\frac{1}{2}}\). Substituting \(\eta _i={\vartheta _i}^{-\frac{1}{2}}\) into the above formula, we have

$$\begin{aligned} p_{12}(\vartheta _i|\lambda _i, \tau , \sigma ^2, \beta _i) \propto \exp \left\{ \frac{-{\beta _i}^2}{2\sigma ^2\tau ^2{\lambda _i}^2}\vartheta _i\right\} \frac{1}{\vartheta _i+1}. \end{aligned}$$

Using the uniform distribution again, we obtain

$$\begin{aligned} u_{12}\sim U\left( 0,\left( 1+\vartheta _i\right) ^{-1}\right) \end{aligned}$$

and

$$\begin{aligned} \vartheta _i|\lambda _i, \tau , \sigma ^2, \beta _i&\sim Exp\left( \frac{1}{2}\frac{{\beta _i}^2}{\sigma ^2\tau ^2{\lambda _i}^2}\right) I\left( \vartheta _i<\frac{1-u_{12}}{u_{12}}\right) . \end{aligned}$$

A similar sampling method for  \(\lambda _i\)  is given as follows:

$$\begin{aligned} u_{13}&\sim U\left( 0,\left( 1+\frac{1}{{\lambda _i}^2}\right) ^{-1}\right) \end{aligned}$$

and

$$\begin{aligned} \frac{1}{{\lambda _i}^2}|\eta _i, \tau , \sigma ^2, \beta _i&\sim Exp\left( \frac{1}{2}\frac{{\beta _i}^2}{\sigma ^2\tau ^2{\eta _i}^2}\right) I\left( \frac{1}{{\lambda _i}^2}<\frac{1-u_{13}}{u_{13}}\right) . \end{aligned}$$

Note that

$$\begin{aligned} p_{13}\left( \sigma ^2|\varvec{\lambda },\varvec{\eta },\tau ,\varvec{\beta }\right)&\propto p_6\left( y|\varvec{\beta },\sigma ^2\right) p_5\left( \varvec{\beta }| \varvec{\lambda },\varvec{\eta },\tau ,\sigma ^2\right) p_1\left( \sigma ^2\right) \\&\propto \sigma ^{2({-a}_1-\frac{p+n}{2}-1)}\exp {\left\{ {-\frac{1}{2\sigma ^2} \left[ (\varvec{\beta }-\mu _{n})^{\prime }\varLambda _{n}(\varvec{\beta }-\mu _{n})\right] } -\frac{b_1}{\sigma ^2}\right\} }. \end{aligned}$$

Thus, its full conditional distribution is also an inverse gamma distribution, i.e.,

$$\begin{aligned} \sigma ^2|\varvec{\lambda },\varvec{\eta },\tau ,\varvec{\beta }&\sim IG\left( a_1+\frac{n+p}{2},b_1+\frac{1}{2}\left[ (\varvec{\beta }-\mu _{n})^{\prime } \varLambda _{n}(\varvec{\beta }-\mu _{n})\right] \right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, Y. & Wang, L. Sparse estimation of linear model via Bayesian method\(^*\). Comput Stat (2024). https://doi.org/10.1007/s00180-024-01474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-024-01474-5

Keywords

Navigation