Skip to main content
Log in

On testing the equality between interquartile ranges

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The interquartile range is a statistical measure well suited to describe the variability of the data at hand, both at the population level and for sample data. The interquartile range is particularly useful when the distribution of the data is asymmetric or irregularly shaped. Here, the use of the interquartile range is investigated when the main aim is to compare the variability of two distributions using two independent random samples, without the need to make any distributional assumptions. Several techniques are compared through numerical studies and real data examples, with a particular attention given to the use of sample quantiles based on the Harrel-Davis estimator or the quantile regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinshin A (2022) Trimmed Harrell-Davis quantile estimator based on the highest density interval of the given width. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2022.2050396

  • Barrodale I, Roberts F (1974) Solution of an overdetermined system of equations in the L1 norm. Commun ACM 17(6):319–320

    Article  Google Scholar 

  • Canty A, Ripley B (2021) boot: Bootstrap R (S-Plus) Functions

  • Choi L (2011) ProfileLikelihood: profile likelihood for a parameter in commonly used statistical models

  • Choi L, Blume JD, Dupont WD (2015) Elucidating the foundations of statistical inference with \(2 \times 2\) tables. PLoS ONE 10(4):e0121263

    Article  Google Scholar 

  • Clark F et al (2012) Effectiveness of a lifestyle intervention in promoting the well-being of independently living older people: results of the well elderly 2 randomised controlled trial. J Epidemiol Community Health 66:782–790

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application, vol 1. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Farcomeni A, Greco L (2016) Robust methods for data reduction. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Feng X, He X, Hu J (2011) Wild bootstrap for quantile regression. Biometrika 98(4):995–999

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher RA (1935) The logic of inductive inference. J R Stat Soc 98(1):39–82

    Article  MathSciNet  MATH  Google Scholar 

  • Gould W et al (1998) Interquartile and simultaneous-quantile regression. Stata Tech Bull 7(38):14–21

  • Greco L, Luta G, Krzywinski M, Altman N (2019) Analyzing outliers: robust methods to the rescue. Nat Methods 16(4):275–277

    Article  Google Scholar 

  • Hahn J (1995) Bootstrapping quantile regression estimators. Econom Theory 11(1):105–121

    Article  MathSciNet  MATH  Google Scholar 

  • Harrell FE, Davis C (1982) A new distribution-free quantile estimator. Biometrika 69(3):635–640

    Article  MathSciNet  MATH  Google Scholar 

  • He X, Hu F (2002) Markov chain marginal bootstrap. J Am Stat Assoc 97(459):783–795

    Article  MathSciNet  MATH  Google Scholar 

  • Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50(4):361–365

    Google Scholar 

  • Johnson WD, Romer JE (2016) Hypothesis testing of population percentiles via the Wald test with bootstrap variance estimates. Open J Stat 6(1):14

    Article  Google Scholar 

  • Johnson WD, Beyl RA, Burton JH, Johnson CM, Romer JE, Zhang L (2015) Use of Pearson’s Chi-square for testing equality of percentile profiles across multiple populations. Open J Stat 5(5):412

    Article  Google Scholar 

  • Koenker RW (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Koenker RW, Bassett G (1982) Tests of linear hypotheses and L1 estimation. Econometrica: J Econ Soc 50(6):1577–1583

  • Koenker R, D’Orey V (1987) Algorithm AS229: computing regression quantiles. Appl Stat 36:383–393

  • Koenker R, Hallock KF (2001) Quantile regression. J Econom Perspect 15(4):143–156

    Article  Google Scholar 

  • Koenker RW, Portnoy S, Ng PT, Zeileis A, Grosjean P, Ripley BD (2018) Package ‘quantreg’. Cran R-project org

  • Liu X, Song Y, Zhang K (2022) An exact bootstrap-based bandwidth selection rule for kernel quantile estimators. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2022.2110595

  • Mair P, Wilcox R (2020) Robust statistical methods in R Using the WRS2 package. Behav Res Methods 52:464–488

    Article  Google Scholar 

  • Mathisen HC (1943) A method of testing the hypothesis that two samples are from the same population. Ann Math Stat 14(2):188–194

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen MI, Wei LJ, Ying Z (1994) A resampling method based on pivotal estimating functions. Biometrika 81(2):341–350

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  • Westenberg J (1947) Mathematics of pollen diagrams. i-ii. In: Proc. Kon. Ned. Akad. Wet, vol 50

  • Westenberg J (1948) Significance test for median and interquartile range in samples from continuous populations of any form. In: Proceedings for Koninklijke Nederlandse Akademie van Wetenschappen, pp 252–261

  • Wilcox RR (2022) Introduction to robust estimation and hypothesis testing, 5th edn. Academic Press, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Greco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23.

Table 5 Data generation scheme (a)
Table 6 Data generation scheme (a)
Table 7 Data generation scheme (b)
Table 8 Data generation scheme (b)
Table 9 Data generation scheme (c)
Table 10 Data generation scheme (c)
Table 11 Data generation scheme (d)
Table 12 Data generation scheme (d)
Table 13 Data generation scheme (e)
Table 14 Data generation scheme (e)
Table 15 Data generation scheme (f)
Table 16 Data generation scheme (f)
Table 17 Data generation scheme (g)
Table 18 Data generation scheme (g)
Table 19 Data generation scheme (ap)
Table 20 Data generation scheme (cp)
Table 21 Data generation scheme (dp)
Table 22 Data generation scheme (ep)
Table 23 Data generation scheme (fp)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, L., Luta, G. & Wilcox, R. On testing the equality between interquartile ranges. Comput Stat (2023). https://doi.org/10.1007/s00180-023-01415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-023-01415-8

Keywords

Navigation