Skip to main content

Advertisement

Log in

Approximating income inequality dynamics given incomplete information: an upturned Markov chain model

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article aims to understand mobility within income distribution in cases where there is incomplete information about how individuals transit between income distribution brackets. Understanding these transitions is crucial for evaluating and designing economic policies that affect the population in the long run. For this reason, we propose a methodology that may assist decision-makers to improve policies related to poverty reduction. We start by assuming that the income distribution bracket a person holds exclusively depends on the previous generation’s income bracket, i.e. it has the memoryless property. Therefore, our model resembles a Markov chain model with a steady state distribution that describes the distribution of the income brackets in the long run, and a transition matrix that describes the transitions between income distribution brackets from generation to generation. In contrast to a Markov chain, we assume a given steady state, in order to analyze the space of consistent transition matrices that could generate the steady state proposed. Additionally, we used the joint distribution simulation algorithm developed by Montiel and Bickel (Decis Anal 9:329–347, https://doi.org/10.1287/deca.1120.0252, 2012) to analyze the transition matrix, which allows us to understand the effects of partial information. We test the model with official data from the National Institute of Statistics and Geography and the Social Mobility Survey in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the National Council of Science and Technology of Mexico (CONACYT), and the National System of Researchers (SNI) under Luis V. Montiel Grant: No 259968.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Arreola or Luis V. Montiel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We derive to its dual form OP (14) from the Lagrangian’s canonical form, where \(\mathbf { \alpha }, \mathbf { \mu } \ge 0\).

$$- \sum\limits_{{i,j}} {(a_{{ij}} + d_{{ij}} )} \cdot \ln (a_{{ij}} + d_{{ij}} ) + \overrightarrow {\lambda } (b - Bd) + \overrightarrow {\beta } ( - Cd) + \overrightarrow {\alpha } (a + d) + \overrightarrow {\mu } [1 - (a + d)].{\text{ }}$$
(20)

Deriving with respect to \(d_{ij}\) we get Eq. (21). Where \(B^c_{ij}\) and \(C^c_{ij}\) are the columns of matrices B and C indexed by i, j.

$$\frac{{ - (a_{{ij}} + d_{{ij}} )}}{{(a_{{ij}} + d_{{ij}} )}} - \ln (a_{{ij}} + d_{{ij}} ) - \overrightarrow {\lambda } B_{{ij}}^{c} - \overrightarrow {\beta } C_{{ij}}^{c} + \alpha _{{ij}} - \mu _{{ij}} = 0.,$$
(21)
$$\ln (a_{{ij}} + d_{{ij}} ) = - 1 - \overrightarrow {\lambda } B_{{ij}}^{c} - \overrightarrow {\beta } C_{{ij}}^{c} + \alpha _{{ij}} - \mu _{{ij}} .,$$
(22)
$$a_{{ij}} + d_{{ij}} = e^{{ - 1 - \overrightarrow {\lambda } B_{{ij}}^{c} - \overrightarrow {\beta } C_{{ij}}^{c} + \alpha _{{ij}} - \mu _{{ij}} }} .$$
(23)

Defining \(\varphi _{{i,j}} = - 1 - \overrightarrow {\lambda } B_{{ij}}^{c} - \overrightarrow {\beta } C_{{ij}}^{c} + \alpha _{{ij}} - \mu _{{ij}}\), and substituting Eqs. (23) in (20) we get:

$$- \sum\limits_{{i,j}} {e^{{\varphi _{{i,j}} }} } \cdot \varphi _{{i,j}} + \overrightarrow {\lambda } \cdot (b - Bd) + \overrightarrow {\beta } \cdot ( - Cd) + \sum\limits_{{i,j}} {\alpha _{{ij}} } \cdot e^{{\varphi _{{i,j}} }} + \sum\limits_{{i,j}} {\mu _{{ij}} } \cdot (1 - e^{{\varphi _{{i,j}} }} )$$
(24)

Reducing terms we get:

$$\sum\limits_{{i,j}} {(e^{{\varphi _{{ij}} }} + \mu _{{ij}} )} + \sum\limits_{{i,j}} {\overrightarrow {\lambda } } B_{{ij}}^{c} e^{{\varphi _{{ij}} }} + \sum\limits_{{i,j}} {\overrightarrow {\beta } } C_{{ij}}^{c} e^{{\varphi _{{ij}} }} + \overrightarrow {\lambda } b - \overrightarrow {\lambda } Bd - \overrightarrow {\beta } Cd.$$
(25)

Substituting Eq. (23) and reducing terms we get:

$$\sum\limits_{{i,j}} {(e^{{\varphi _{{ij}} }} + \mu _{{ij}} )} + \overrightarrow {\lambda } b + \overrightarrow {\lambda } Ba + \overrightarrow {\beta } Ca.$$
(26)

Where the vector a is the vectorized version of matrix A. Assuming A is a transition matrix, which rows sum to one, we have \(Ca={{\textbf {1}}}\), and \(\overrightarrow {\lambda } Ca = \overrightarrow {\lambda } {\mathbf{1}}\). Additionally, we have \(\overrightarrow {\lambda } (Ba + b) = \overrightarrow {\lambda } (\pi A + \pi (I - A)) = \overrightarrow {\lambda } \pi\), where I is the identity matrix. Substituting we get:

$$\sum\limits_{{i,j}} {(e^{{\varphi _{{ij}} }} + \mu _{{ij}} )} + \overrightarrow {\lambda } \pi + \overrightarrow {\beta } {\mathbf{1}}.$$
(27)

From Eq. (27) we can formulate the dual problem as:

$$\begin{aligned} \mathop {{\text{Minimize}}}\limits_{{}} & \sum\limits_{{i,j}} \quad (e^{{ - 1 - {\mathbf{\lambda }}B_{{ij}}^{c} - {\mathbf{\beta }}C_{{ij}}^{c} + \alpha _{{ij}} - \mu _{{ij}} }} + \mu _{{ij}} ) + \overrightarrow {\lambda } \pi + \overrightarrow {\beta } {\mathbf{1}} \\ {\text{subject to:}} & \\ & \alpha ,\mu \ge 0,\lambda ,\;\beta \quad {\text{ free}} \\ \end{aligned}$$
(28)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arreola, D., Montiel, L.V. Approximating income inequality dynamics given incomplete information: an upturned Markov chain model. Comput Stat 39, 629–651 (2024). https://doi.org/10.1007/s00180-022-01305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-022-01305-5

Keywords

Navigation