Skip to main content
Log in

Measuring and testing interdependence among random vectors based on Spearman’s \(\rho \) and Kendall’s \(\tau \)

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Inspired by the correlation matrix and based on the generalized Spearman’s \(\rho \) and Kendall’s \(\tau \) between random variables proposed in Lu et al. ( J Nonparametr Stat 30(4):860–883, 2018), \(\rho \)-matrix and \(\tau \)-matrix are suggested for multivariate data sets. The matrices are used to construct the \(\rho \)-measure and the \(\tau \)-measure among random vectors with statistical estimation and the asymptotic distributions under the null hypothesis of independence that produce the nonparametric tests of independence for multiple vectors. Simulation results demonstrate that the proposed tests are powerful under different grouping of the investigated random vector. An empirical application to detecting dependence of the closing price of a portfolio of stocks in NASDAQ also illustrates the applicability and effectiveness of our provided tests. Meanwhile, the corresponding measures are applied to characterize strength of interdependence of that portfolio of stocks during the recent two years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belalia M, Bouezmarni T, Lemyre FC, Taamouti A (2017) Testing independence based on Bernstein empirical copula and copula density. J Nonparametr Stat 29(2):346–380

    Article  MathSciNet  Google Scholar 

  • Ehrenberg ASC (1952) On sampling from a population of rankers. Biometrics 39(1/2):82–87

    Article  MathSciNet  Google Scholar 

  • Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29(4):751–760

    Article  MathSciNet  Google Scholar 

  • Embrechts P, McNeil A, Straumann D (2002) Risk management: value at risk and beyond, Cambridge University Press, Ch. Correlation and dependency in risk management: properties and pitfalls, pp 176–223

  • Gábor JS, Maria LR, Nail KB (2007) Measureing and testing dependence by correlation of distance. Ann Stat 35(6):2769–2794

    Article  Google Scholar 

  • Grothe O, Schnieders J, Segers J (2014) Measuring association and dependence between random vectors. J Multivar Anal 123:96–110

    Article  MathSciNet  Google Scholar 

  • Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377

    Article  Google Scholar 

  • Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Ann Math Stat 19(3):293–325

    Article  MathSciNet  Google Scholar 

  • Hays WL (1960) A note on average tau as a measure of concordance. J Am Stat Assoc 55:331–341

    Article  MathSciNet  Google Scholar 

  • Joe H (1997) Multivariative models and dependence concepts. Springer, Dordrecht

    Book  Google Scholar 

  • Joel O, Ramon R (1983) On the class of elliptical distributions and their applications to the theory of portfolio choice. Journal of Finance 38:745–752

    Article  Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

    Article  Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Griffin, London, pp 148–154

    Google Scholar 

  • Kendall MG, Smith BB (1939) The problem of \(m\) rankings. Ann Math Stat 10(3):275–287

    Article  MathSciNet  Google Scholar 

  • Koroljuk VS, Borovskich YV (1994) Theory of u-statistics, chapter 4. Springer, New York

    Book  Google Scholar 

  • Kojadinovic I, Holmes M (2009) Tests of independence among continuous random vectors based on Cramér-von Mises functionals of the empirical copula process. J Multivar Anal 100:1137–1154

    Article  Google Scholar 

  • Lu DW, Zhang LY, Wang XG, Song LX (2018) Some new measures of dependence based on Spearman’s \(\rho \) and Kendall’s \(\tau \). J Nonparametr Stat 30(4):860–883

    Article  MathSciNet  Google Scholar 

  • Marozzi M (2014) Testing for concordance between several criteria. J Stat Comput Simul 84(9):1843–1850

    Article  MathSciNet  Google Scholar 

  • Marozzi M (2016) Multivariate tests based on interpoint distances with application to magnetic resonance imaging. Stat Methods Med Res 25:2593–2610

    Article  MathSciNet  Google Scholar 

  • Maache HE, Lepage Y (2003) Spearman’s rho and Kendall’s tau for multivatiate data sets. Mathematical statistics and applications: Festischrift and Constance van Eeden. Lecture notes-monograph series, Institute of Mathematical Statistics, pp 113–130

  • Nelsen RB (2006) An introduction to copula, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pesarin F (2001) Multivariate permutation tests with applications in biostatistics. Wiley, Chichester

    MATH  Google Scholar 

  • Pesarin F, Salmaso L (2010) Permutation tests for complex data (theory, application and software). Wiley, Chichester

    Book  Google Scholar 

  • Pollet JM, Wilson M (2010) Average correlation and stock market returns. J Financ Econ 96:364–380

    Article  Google Scholar 

  • Quessy J-F (2009) Theoretical efficiency comparisons of independence test based on multivariate versions of Spearman’s rho. Metrika 70:315–338

    Article  MathSciNet  Google Scholar 

  • Quessy J-F (2010) Applications and asymptotic power of marginal-free tests of stochastic vectorial independence. J Stat Plan Inference 140:3058–3075

    Article  MathSciNet  Google Scholar 

  • Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the rv-coefficient. Appl Stat 25(3):257–265

    Article  MathSciNet  Google Scholar 

  • Schmid F, Schmidt R (2007) Multivariate extensions of Spearman’s rho and related statistics. Stat Probab Lett 77(4):407–416

    Article  MathSciNet  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101

    Article  Google Scholar 

  • Székely G, Rizzo M (2007) Measuring and testing dependence by correlation of distance. Ann Stat 35(6):2769–2794

    Article  MathSciNet  Google Scholar 

  • Székely G, Rizzo M (2009) Browian distance covariance. Ann Appl Stat 3(4):1236–1265

    Article  MathSciNet  Google Scholar 

  • Santi T, Sompong D (2016) Measures of the functional dependence of random vectors. Int J Approx Reason 68:15–26

    Article  MathSciNet  Google Scholar 

  • Wlodzimierz W (2015) Kendall’s tau and Spearmam’s rho for \(n\)-dimensional Archimedean copulas and their asymptotic properties. J Nonparametr Stat 27(4):442–459

    Article  MathSciNet  Google Scholar 

  • Zhang LY, Lu DW, Wang XG (2019) The essential dependence for a group of random vectors. Communications in statistics—theory and methods submitted

  • Zinoviy L, Udi M, Tong S (2018) A multivariate til covariance measure for elliptical distributions. Insur Math Econ 81:27–35

    Article  Google Scholar 

Download references

Acknowledgements

The research of the first author is sponsored by the China Scholarship Council. The second author is supported by the National Natural Sciences Foundation of China (Grant No. 11571058), the Fundamental Research Funds for the Central Universities (Grant No. DUT18LK18), the Dalian High Level Talent Innovation Programme(Grant No. 2015R051) and the High-level innovative and entrepreneurial talents support plan in Dalian (Grant No. 2017RQ041). The third author is supported by the National Natural Sciences Foundation of China (Grant No. 11471065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Proposition 1

Proof of Proposition 1

From (5), (8), for the couple \(X_{k,r},X_{l,s}\), \(k\ne l,r\in \{1,2,\ldots ,d_{k}\},s\in \{1,2,\ldots ,d_{l}\}\), the estimators of \(\rho (X_{k,r},X_{l,s})\) and \(\tau (X_{k,r},X_{l,s})\) by U-statistic are

$$\begin{aligned}&\hat{\rho }_{n}(X_{k,r},X_{l,s})\\&\quad =\frac{1}{C_{n}^{3}}\sum _{1\le i<j<t\le n}h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j}), (X_{k,r,t},X_{l,s,t})\right) , \end{aligned}$$
$$\begin{aligned} \hat{\tau }_{n}(X_{k,r},X_{l,s})=\frac{1}{C_{n}^{2}}\sum _{1\le i<j\le n}h_{\tau (X_{k,r},X_{l,s})}^{*}((X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j})), \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j}), (X_{k,r,t},X_{l,s,t})\right) \\&\quad =2\big (I_{\{X_{k,r,j}\le X_{k,r,i},X_{l,s,t}\le X_{l,s,i}\}}+I_{\{X_{k,r,t}\le X_{k,r,j},X_{l,s,i}\le X_{l,s,j}\}}+I_{\{X_{,k,r,i}\le X_{k,r,t},X_{l,s,j}\le X_{l,s,t}\}}\\&\qquad +I_{\{X_{k,r,t}\le X_{k,r,i},X_{l,s,j}\le X_{l,s,i}\}}+I_{\{X_{k,r,j}\le X_{k,r,t},X_{l,s,i}\le X_{l,s,t}\}}\\&\qquad +I_{\{X_{k,r,i}\le X_{k,r,j},X_{l,s,t}\le X_{l,s,j}\}}\big )-3, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned}&h_{\tau (X_{k,r},X_{l,s})}^{*}((X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j}))\\ =&\text {sign}((X_{k,r,i}-X_{k,r,j})(X_{l,s,i}-X_{l,s,j}))\\ =&2\left( I_{\{X_{k,r,i}>X_{k,r,j},X_{l,s,i}>X_{l,s,j}\}}+ I_{\{X_{k,r,i}<X_{k,r,j},X_{l,s,i}<X_{l,s,j}\}}\right) -1, \end{aligned} \end{aligned}$$

are the symmetric kernels of \(\rho (X_{k,r},X_{l,s})\) and \(\tau (X_{k,r},X_{l,s})\). Under the null hypothesis that \(\varvec{X}^{(k)}\) and \(\varvec{X}^{(l)},~k\ne l\) are independent,

$$\begin{aligned}&h_{\rho (X_{k,r},X_{l,s}),1}^{*}(x_{k,r,1},x_{l,s,1})\\\triangleq & {} E\left( h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,1},X_{l,s,1}),(X_{k,r,2},X_{l,s,2}), (X_{k,r,3},X_{l,s,3})\right) |(X_{k,r,1},X_{l,s,1})\right. \\&\left. =(x_{k,r,1},x_{l,s,1})\right) \\= & {} 4F_{k,r}(x_{k,r,1})F_{l,s}(x_{l,s,1})-2F_{k,r}(x_{k,r,1})-2F_{l,s}(x_{l,s,1})+1\\= & {} h_{\tau (X_{k,r},X_{l,s}),1}^{*}(x_{k,r,1},x_{l,s,1})\nonumber \\\triangleq & {} E\left( h_{\tau (X_{k,r},X_{l,s})}^{*}((X_{k,r,1},X_{l,s,1}),(X_{k,r,2},X_{l,s,2}))|(X_{k,r,1},X_{l,s,1}){=}(x_{k,r,1},x_{l,s,1})\right) ,\nonumber \\ \end{aligned}$$

then

$$\begin{aligned} E\left( h_{\xi (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\right) =0,~Var\left( h_{\xi (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\right) =\frac{1}{9}, \end{aligned}$$
(13)

where \(\xi \) is \(\rho \) or \(\tau \). By Hoeffding (1948)’s decomposition theorem, we find

$$\begin{aligned} \sqrt{n}\hat{\rho }_{n}(X_{k,r},X_{l,s})\overset{\mathcal {L}}{\rightarrow }N(0,1),~ \sqrt{n}\hat{\tau }_{n}(X_{k,r},X_{l,s})\overset{\mathcal {L}}{\rightarrow }N(0,\frac{4}{9}),~~~n\rightarrow \infty . \end{aligned}$$

Let \(W_{\rho (X_{k,r},X_{l,s}),n}=\frac{3}{\sqrt{n}}\sum _{i=1}^{n} h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,i},X_{l,s,i})\). Then

$$\begin{aligned}&E(\sqrt{n}\hat{\rho }_{n}(X_{k,r},X_{l,s})-W_{\rho (X_{k,r},X_{l,s}),n})^{2}\nonumber \\&=Var(\sqrt{n}\hat{\rho }_{n}(X_{k,r},X_{l,s}))+Var(W_{\rho (X_{k,r},X_{l,s}),n})\nonumber \\&\quad \,-6nE\left( \hat{\rho }_{n}(X_{k,r},X_{l,s})h_{\rho (X_{k,r},X_{l,s}),1}^{*}(\varvec{Z}_{k,r;l,s;1})\right) . \end{aligned}$$
(14)

Consider \(E\left( h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j}), (X_{k,r,t},X_{l,s,t})\right) \right. \left. h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,i},X_{l,s,i})\right) \), where \(1\le i<j<t\le n\). If \(i=1\), from (13), for \(\forall ~2\le j<t\le n\), we have

$$\begin{aligned}&E\left( E\left. \left( h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,1},X_{l,s,1}),(X_{k,r,j},X_{l,s,j}), (X_{k,r,t},X_{l,s,t})\right) \right. \right. \right. \nonumber \\&\quad \left. \left. \left. h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\Big | (X_{k,r,1},X_{l,s,1})\right) \right. \right) \nonumber \\&\quad =E\left( h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\right) ^{2}=\frac{1}{9}; \end{aligned}$$
(15)

If \(i>1\), then

$$\begin{aligned}&E\left( h_{\rho (X_{k,r},X_{l,s})}^{*}\left( (X_{k,r,i},X_{l,s,i}),(X_{k,r,j},X_{l,s,j}), (X_{k,r,t},X_{l,s,t})\right) \right. \nonumber \\&\quad \left. h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\right) =0. \end{aligned}$$
(16)

Thus,

$$\begin{aligned} E\left( \hat{\rho }_{n}(X_{k,r},X_{l,s})h_{\rho (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,1},X_{l,s,1})\right) =\frac{1}{C_{n}^{3}}\cdot C_{n-1}^{2}\cdot \frac{1}{9}=\frac{1}{3n}. \end{aligned}$$
(17)

Since \(\displaystyle \lim _{n\rightarrow \infty }Var(\sqrt{n}\hat{\rho }_{n}(X_{k,r},X_{l,s}))=Var(W_{\rho (X_{k,r},X_{l,s}),c})=1\), for \(\forall ~c\ge 1\), combining (14)–(17), it is easy to see

$$\begin{aligned} \displaystyle \lim _{n\rightarrow \infty }E(\sqrt{n}\hat{\rho }_{n}(X_{k,r},X_{l,s})-W_{\rho (X_{k,r},X_{l,s}),n})^{2}=0. \end{aligned}$$
(18)

Let \(W_{\tau (X_{k,r},X_{l,s}),n}=\frac{2}{\sqrt{n}}\sum _{i=1}^{n}h_{\tau (X_{k,r},X_{l,s}),1}^{*}(X_{k,r,i},X_{l,s,i})\). According to the above procedure, we have

$$\begin{aligned} \displaystyle \lim _{n\rightarrow \infty }E(\sqrt{n}\hat{\tau }_{n}(X_{k,r},X_{l,s})-W_{\tau (X_{k,r},X_{l,s}),n})^{2}=0 \end{aligned}$$
(19)

Using (18) and (19), for any \(X_{k,r}\) from \(\varvec{X}^{(k)}\), \(X_{l,s}\) from \(\varvec{X}^{(l)}\), \(X_{a,\alpha }\) from \(\varvec{X}^{(a)}\), and \(X_{b,\beta }\) from \(\varvec{X}^{(b)}\), \(k\ne l,~a\ne b\), we have

$$\begin{aligned}&\displaystyle \lim _{n\rightarrow \infty }\left( \text {Cov}\left( \sqrt{n}\hat{\xi }_{n}(X_{k,r},X_{l,s}),\sqrt{n}\hat{\xi }_{n}(X_{a,\alpha },X_{b,\beta })\right) \right. \nonumber \\&\quad \left. -\text {Cov}\left( W_{\xi (X_{k,r},X_{l,s}),n},W_{\xi (X_{a,\alpha },X_{b,\beta }),n}\right) \right) =0, \end{aligned}$$
(20)

where \(\xi \) denotes \(\rho \) or \(\tau \). Denote two \(\sum _{k=1}^{m-1}\sum _{l=k+1}^{m}d_{k}d_{l}\)-column vectors as

$$\begin{aligned} \varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\ldots ,\varvec{X}^{(m)}),n}= \begin{pmatrix} \varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\varvec{X}^{(2)}),n}\\ \varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\varvec{X}^{(3)}),n}\\ \vdots \\ \varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\varvec{X}^{(m)}),n}\\ \varvec{\Lambda }_{\xi (\varvec{X}^{(2)},\varvec{X}^{(3)}),n}\\ \vdots \\ \varvec{\Lambda }_{\xi (\varvec{X}^{(2)},\varvec{X}^{(m)}),n}\\ \vdots \\ \varvec{\Lambda }_{\xi (\varvec{X}^{(m-1)},\varvec{X}^{(m)}),n}\\ \end{pmatrix},~ \varvec{W}_{\xi (\varvec{X}^{(1)},\varvec{X}^{(2)},\ldots ,\varvec{X}^{(m)}),n}= \begin{pmatrix} \varvec{W}_{\xi (\varvec{X}^{(1)},\varvec{X}^{(2)}),n}\\ \varvec{W}_{\xi (\varvec{X}^{(1)},\varvec{X}^{(3)}),n}\\ \vdots \\ \varvec{W}_{\xi (\varvec{X}^{(1)},\varvec{X}^{(m)}),n}\\ \varvec{W}_{\xi (\varvec{X}^{(2)},\varvec{X}^{(3)}),n}\\ \vdots \\ \varvec{W}_{\xi (\varvec{X}^{(2)},\varvec{X}^{(m)}),n}\\ \vdots \\ \varvec{W}_{\xi (\varvec{X}^{(m-1)},\varvec{X}^{(m)}),n}\\ \end{pmatrix}, \end{aligned}$$

where \(\varvec{\Lambda }_{\xi (\varvec{X}^{(k)},\varvec{X}^{(l)}),n}= \begin{pmatrix} \hat{\xi }_{n}(X_{k,1},X_{l,1})\\ \hat{\xi }_{n}(X_{k,1},X_{l,2})\\ \vdots \\ \hat{\xi }_{n}(X_{k,1},X_{l,d_{l}})\\ \hat{\xi }_{n}(X_{k,2},X_{l,1})\\ \vdots \\ \hat{\xi }_{n}(X_{k,2},X_{l,d_{l}})\\ \vdots \\ \hat{\xi }_{n}(X_{k,d_{k}},X_{l,d_{l}}) \end{pmatrix},~ \varvec{W}_{\xi (\varvec{X}^{(k)},\varvec{X}^{(l)}),n}= \begin{pmatrix} W_{\xi (X_{k,1},X_{l,1}),n}\\ W_{\xi (X_{k,1},X_{l,2}),n}\\ \vdots \\ W_{\xi (X_{k,1},X_{l,d_{l}}),n}\\ W_{\xi (X_{k,2},X_{l,1}),n}\\ \vdots \\ W_{\xi (X_{k,2},X_{l,d_{l}}),n}\\ \vdots \\ W_{\xi (X_{k,d_{k}},X_{l,d_{l}}),n} \end{pmatrix}\) are \(d_{k}d_{l}\)-vectors, \(1\le k<l\le m\) and \(\xi \) represents \(\rho \) or \(\tau \). From (18) and (19), it is proved that \(\sqrt{n}\varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\ldots ,\varvec{X}^{(m)}),n}\) and \(\varvec{W}_{\xi (\varvec{X}^{(k)},\varvec{X}^{(l)}),n}\) have the same limit distribution. Combining (13) and multidimensional CLT, as \(n\rightarrow \infty \), we have

$$\begin{aligned} \begin{aligned}&\varvec{W}_{\rho (\varvec{X}^{(1)},\varvec{X}^{(2)},\ldots ,\varvec{X}^{(m)}),n} \overset{\mathcal {L}}{\rightarrow }N_{\sum _{1\le k<l\le m}d_{k}d_{l}}(\varvec{0},\varvec{\Sigma }),\\&\varvec{W}_{\tau (\varvec{X}^{(1)},\varvec{X}^{(2)},\ldots ,\varvec{X}^{(m)}),n} \overset{\mathcal {L}}{\rightarrow }N_{\sum _{1\le k<l\le m}d_{k}d_{l}}(\varvec{0},\frac{4}{9}\varvec{\Sigma }), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \varvec{\Sigma }&=\begin{pmatrix} \varvec{\Sigma }_{1} &{} &{} &{} \\ &{} \varvec{\Sigma }_{2} &{} &{} \text {{0}} \\ &{} &{}\ddots &{} \\ &{} \text {{0}} &{} &{} \varvec{\Sigma }_{\frac{m(m-1)}{2}} \end{pmatrix},~~ \varvec{\Sigma }_{\frac{(2m-k)(k-1)}{2}+l-k}\nonumber \\&=\text {Cov}(\varvec{W}_{\rho (\varvec{X}^{(k)},\varvec{X}^{(l)})},\varvec{W}_{\rho (\varvec{X}^{(k)},\varvec{X}^{(l)})}),1\le k<l\le m \end{aligned}$$
(21)

is a symmetric and positive definite matrix of dimension \(\left( \sum _{1\le k<l\le m}d_{k}d_{l}\right) \times \left( \sum _{1\le k<l\le m}d_{k}d_{l}\right) \), and for any \(1\le k<l\le m\), \(1\le a<b\le m\), \(r\in \{1,\ldots ,d_{k}\}\), \(s\in \{1,\ldots ,d_{l}\}\), \(\alpha \in \{1,\ldots ,d_{a}\}\) and \(\beta \in \{1,\ldots ,d_{b}\}\), the \((\sum _{\mu =1}^{k-1}\sum _{\nu =\mu +1}^{m}d_{\mu }d_{\nu } +d_{k}\sum _{\nu =k+1}^{l-1}d_{\nu }+(r-1)d_{l}+s,\sum _{\mu =1}^{a-1} \sum _{\nu =\mu +1}^{m}d_{\mu }d_{\nu }+d_{a}\sum _{\nu =a+1}^{b-1}d_{\nu }+ (\alpha -1)d_{b}+\beta )\) entry of \(\varvec{\Sigma }\) is

$$\begin{aligned}&36\text {Cov}(2U_{k,r,i}U_{l,s,i}-U_{k,r,i}-U_{l,s,i}, 2U_{a,\alpha ,i}U_{b,\beta ,i}-U_{a,\alpha ,i}-U_{b,\beta ,i})\\&=\rho (X_{k,r,i},X_{a,\alpha ,i})\rho (X_{l,s,i},X_{b,\beta ,i}), \end{aligned}$$

where \(U_{k,r,i}=F_{k,r}(X_{k,r,i})\). Note that \(\rho _{s}(X_{k,r,i},X_{a,\alpha ,i})\rho _{s}(X_{l,s,i},X_{b,\beta ,i})=0\) unless \(k=a,l=b\). Especially, the entries of \(\varvec{\Sigma }\) on the principal diagonal are 1. Hence, as \(n\rightarrow \infty \),

$$\begin{aligned} \begin{aligned}&\sqrt{n}\varvec{\Lambda }_{\rho (\varvec{X}^{(1)},\varvec{X}^{(2)},\ldots ,\varvec{X}^{(m)}),n} \overset{\mathcal {L}}{\rightarrow }N_{\sum _{1\le k<l\le m}d_{k}d_{l}}(\varvec{0},\varvec{\Sigma }),\\&\sqrt{n}\varvec{\Lambda }_{\tau (\varvec{X}^{(1)},\varvec{X}^{(2)},\ldots ,\varvec{X}^{(m)}),n} \overset{\mathcal {L}}{\rightarrow }N_{\sum _{1\le k<l\le m}d_{k}d_{l}}(\varvec{0},\frac{4}{9}\varvec{\Sigma }). \end{aligned} \end{aligned}$$
(22)

Let \(\varvec{I}_{\sum _{1\le k<l\le m}d_{k}d_{l}}=(1,1,\ldots ,1)^{\top }\) be a vector of dimension \(\sum _{1\le k<l\le m}d_{k}d_{l}\). Rewrite

$$\begin{aligned} \sqrt{n}\hat{D}_{\xi _{n}}(\varvec{X}^{(1)},\ldots ,\varvec{X}^{(m)}) =\frac{\sqrt{n}}{\sum _{1\le k<l\le m}d_{k}d_{l}}\varvec{I}^{\top }_{\sum _{1\le k<l\le m}d_{k}d_{l}}\cdot \varvec{\Lambda }_{\xi (\varvec{X}^{(1)},\ldots ,\varvec{X}^{(m)})}. \end{aligned}$$
(23)

Since

$$\begin{aligned}&\varvec{I}^{\top }_{\sum _{1\le k<l\le m}d_{k}d_{l}}\cdot \varvec{\Sigma }\cdot \varvec{I}_{\sum _{1\le k<l\le m}d_{k}d_{l}}\nonumber \\= & {} \sum _{k,a=1}^{m-1}\sum _{l=k+1}^{m}\sum _{b=a+1}^{m} \varvec{I}_{d_{k}d_{l}}^{\top }\cdot \text {Cov}(\sqrt{n}\varvec{\Lambda }_{\rho (\varvec{X}^{(k)},\varvec{X}^{(l)}),n},\sqrt{n}\varvec{\Lambda }_{\rho (\varvec{X}^{(a)},\varvec{X}^{(b)}),n})\cdot \varvec{I}_{d_{a}d_{b}}\nonumber \\= & {} \sum _{k=1}^{m-1}\sum _{l=k+1}^{m} \varvec{I}_{d_{k}d_{l}}^{\top }\cdot \text {Cov}(\sqrt{n}\varvec{\Lambda }_{\rho (\varvec{X}^{(k)},\varvec{X}^{(l)}),n},\sqrt{n}\varvec{\Lambda }_{\rho (\varvec{X}^{(k)},\varvec{X}^{(l)}),n})\cdot \varvec{I}_{d_{k}d_{l}}\nonumber \\= & {} \sum _{k=1}^{m-1}\sum _{l=k+1}^{m}\sum _{r,\alpha =1}^{d_{k}}\sum _{s,\beta =1}^{d_{l}}\rho _{s}(X_{k,r},X_{k,\alpha })\rho _{s}(X_{l,s},X_{l,\beta })\\= & {} \sum _{k=1}^{m-1}\sum _{l=k+1}^{m}\sum _{r,\alpha =1}^{d_{k}}\sum _{s,\beta =1}^{d_{l}} \text {Cov}(F_{k,r}(X_{k,r}),F_{k,\alpha }(X_{k,\alpha }))\text {Cov}(F_{l,s}(X_{l,s}),F_{l,\beta }(X_{l,\beta }))\nonumber \\= & {} \sum _{k=1}^{m-1}\sum _{l=k+1}^{m} \text {Cov}(\sum _{r=1}^{d_{k}}F_{k,r}(X_{k,r}),\sum _{\alpha =1}^{d_{k}}F_{k,\alpha }(X_{k,\alpha })) \text {Cov}(\sum _{s=1}^{d_{l}}F_{l,s}(X_{l,s}),\sum _{\beta =1}^{d_{l}}F_{l,\beta }(X_{l,\beta }))\nonumber \\= & {} \sum _{k=1}^{m-1}\sum _{l=k+1}^{m} Var(\sum _{r=1}^{d_{k}}F_{k,r}(X_{k,r}))Var(\sum _{s=1}^{d_{l}}F_{l,s}(X_{l,s}))>0,\nonumber \end{aligned}$$
(24)

we note that the third equality holds since (21) in which \(\varvec{\Sigma }\) has \(\varvec{\Sigma }_{i},i=1,\ldots ,\frac{m(m-1)}{2}\) down the principal diagonal and zeros elsewhere, and the results follow from (22)–(24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lu, D. & Wang, X. Measuring and testing interdependence among random vectors based on Spearman’s \(\rho \) and Kendall’s \(\tau \). Comput Stat 35, 1685–1713 (2020). https://doi.org/10.1007/s00180-020-00973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-00973-5

Keywords

Navigation