Skip to main content
Log in

Sequential fixed-accuracy confidence intervals for the stress–strength reliability parameter for the exponential distribution: two-stage sampling procedure

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, a two-stage sequential estimation procedure is considered to construct fixed-accuracy confidence intervals of the reliability parameter R under the stress–strength model when the stress and strength are independent exponential random variables with different scale parameters. The exact distribution of the total sample size, explicit formulas for the expected value, and mean squared error of the maximum likelihood estimator of the reliability parameter under the stress–strength model are provided under the two-stage sequential procedure. Performances of the proposed methodology are investigated with the help of simulations. Finally, using three pairs of real datasets, the procedure is clearly illustrated. We used MATLAB in order to implement computations, simulation studies, and real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Awad AM, Azzam MM, Hamdan MA (1981) Some inference results on \({\text{ Pr }}({\text{ X }}<{\text{ Y }})\) in the bivariate exponential model. Commun Stat Theory Methods 10(24):2515–2525

    Article  MathSciNet  Google Scholar 

  • Bandyopadhyay U, Das R, Biswas A (2003) Fixed width confidence interval of \(\text{ P }(\text{ X }<\text{ Y })\) in partial sequential sampling scheme. Seq Anal 22(1–2):75–93

    Article  MathSciNet  Google Scholar 

  • Banerjee S, Mukhopadhyay N (2016) A general sequential fixed-accuracy confidence interval estimation methodology for a positive parameter: illustrations using health and safety data. Ann Inst Stat Math 68(3):541–570

    Article  MathSciNet  Google Scholar 

  • Bapat SR (2018) Purely sequential fixed accuracy confidence intervals for \({\text{ P }}({\text{ X }}>{\text{ Y }})\) under bivariate exponential models. Am J Math Manag Sci 37(4):386–400

    Google Scholar 

  • Beg MA (1980) On the estimation of \({\text{ Pr }}({\text{ Y }}>{\text{ X }})\) for the two-parameter exponential distribution. Metrika 27(1):29–34

    Article  MathSciNet  Google Scholar 

  • Birnbaum ZW (1956) On a use of the Mann–Whitney statistic. In: Neyman J (ed) Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics. University of California Press, Berkeley, pp 13–17

  • Birnbaum ZW, McCarty RC (1958) A distribution-free upper confidence bound for \({\text{ P }}({\text{ Y }}>{\text{ X }})\), based on independent samples of X and Y. Ann Math Stat 29(2):558–562

    Article  MathSciNet  Google Scholar 

  • Chao A (1982) On comparing estimators of \({\text{ Pr }}({\text{ Y }}<{\text{ X }})\) in the exponential case. IEEE Trans Reliab 31(4):389–392

    Article  Google Scholar 

  • Chiodo E (2014) Model robustness analysis of a Bayes stress–strength reliability estimation with limited data. In: 2014 international symposium on power electronics, electrical drives, automation and motion. pp 1140–1145

  • Cramer E, Kamps U (1997) The UMVUE of \({\text{ P }}({\text{ X }}>{\text{ Y }})\) based on type-ii censored samples from Weinman multivariate exponential distributions. Metrika 46(1):93

    Article  MathSciNet  Google Scholar 

  • Efron B (1988) Logistic regression, survival analysis, and the Kaplan–Meier curve. J Am Stat Assoc 83(402):414–425

    Article  MathSciNet  Google Scholar 

  • Enis P, Geisser S (1971) Estimation of the probability that \({\text{ Y }}>{\text{ X }}\). J Am Stat Assoc 66(333):162–168

    MathSciNet  MATH  Google Scholar 

  • Ferguson T (1996) A course in large sample theory. Chapman and Hall texts in statistical science, 1st edn. Chapman and Hall/CRC, London

    Book  Google Scholar 

  • Freund JE (1961) A bivariate extension of the exponential distribution. J Am Stat Assoc 56(296):971–977

    Article  MathSciNet  Google Scholar 

  • Govindarajulu Z (1974) Fixed-width confidence intervals for \({\text{ P }}({\text{ X }}<{\text{ Y }})\). In: Proschan EF, Serfling RJ (eds) Reliability and biometry: statistical analysis of lifelength. Society for Industrial and Applied Mathematics, Philadelphia, pp 747–757

    Google Scholar 

  • Johnson RA (1988) 3 stress–strength models for reliability. In: Quality control and reliability, vol 7 of handbook of statistics. Elsevier, pp 27 – 54

  • Kao E (1997) An introduction to stochastic processes. In: Business statistics series. Duxbury Press

  • Kelley GD, Kelley JA, Schucany WR (1976) Efficient estimation of \({\text{ P }}({\text{ Y }}<{\text{ X }})\) in the exponential case. Technometrics 18(3):359–360

    MathSciNet  MATH  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data. In: Statistics for biology and health, 2nd edn.. Springer, New York. https://doi.org/10.1007/b97377

  • Kotz S, Lumel’skii I, Pensky M (2003) The stress-strength model and its generalizations: theory and applications, EBL-Schweitzer. World Scientific, Singapore

    Book  Google Scholar 

  • Kundu D, Gupta RD (2006) Estimation of \({\text{ P }}({\text{ Y }}<{\text{ X }})\) for weibull distributions. IEEE Trans Reliab 55(2):270–280

    Article  Google Scholar 

  • Mahmoudi E, Khalifeh A, Nekoukhou V (2019) Minimum risk sequential point estimation of the stress–strength reliability parameter for exponential distribution. Seq Anal 38(3):279–300

    Article  MathSciNet  Google Scholar 

  • Mahmoudi E, Lalehzari R (2017) Bounded risk estimation of the hazard rate function of the exponential distribution: two-stage procedure. Seq Anal 36(1):38–54

    Article  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1967) A generalized bivariate exponential distribution. J Appl Probab 4(2):291–302

    Article  MathSciNet  Google Scholar 

  • Mirjalili M, Torabi H, Nadeb H, Bafekri FS (2016) Stress–strength reliability of exponential distribution based on type-I progressively hybrid censored samples. J Stat Res Iran 13:89–105. https://doi.org/10.18869/acadpub.jsri.13.1.5

    Article  Google Scholar 

  • Mukhopadhyay N, Banerjee S (2014) Purely sequential and two-stage fixed-accuracy confidence interval estimation methods for count data from negative binomial distributions in statistical ecology: one-sample and two-sample problems. Seq Anal 33(2):251–285

    Article  MathSciNet  Google Scholar 

  • Mukhopadhyay N, Bapat SR (2016) Multistage estimation of the difference of locations of two negative exponential populations under a modified linex loss function: real data illustrations from cancer studies and reliability analysis. Seq Anal 35(3):387–412

    Article  MathSciNet  Google Scholar 

  • Mukhopadhyay N, Pepe W (2006) Exact bounded risk estimation when the terminal sample size and estimator are dependent: the exponential case. Seq Anal 25(1):85–101

    Article  MathSciNet  Google Scholar 

  • Mukhopadhyay N, Zhuang Y (2016) On fixed-accuracy and bounded accuracy confidence interval estimation problems in fishers nile example. Seq Anal 35(4):516–535

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Kotz S (2006) Reliability for some bivariate exponential distributions. Math Probl Eng. https://doi.org/10.1155/MPE/2006/41652

    Article  MathSciNet  MATH  Google Scholar 

  • Patowary AN, Hazarika J, Sriwastav GL (2013) Interference theory of reliability: a review. Int J Syst Assur Eng Manag 4(2):146–158

    Article  Google Scholar 

  • Sathe Y, Shah S (1981) On estimating \({\text{ P }}({\text{ X }}>{\text{ Y }})\) for the exponential distribution. Commun Stat Theory Methods 10(1):39–47

    Article  MathSciNet  Google Scholar 

  • Shanker R, Fesshaye H, Selvaraj S (2016) On modeling of lifetime data using one parameter akash, lindley and exponential distributions. Biom Biostat Int J 3(2):61–62

    Google Scholar 

  • Stein C (1945) A two-sample test for a linear hypothesis whose power is independent of the variance. Ann Math Stat 16(3):243–258

    Article  MathSciNet  Google Scholar 

  • Tong H (1974) A note on the estimation of \({\text{ Pr }}({\text{ Y }}<{\text{ X }})\) in the exponential case. Technometrics 16(4):625–625

    MathSciNet  MATH  Google Scholar 

  • Xia Z, Yu J, Cheng L, Liu L, Wang W (2009) Study on the breaking strength of jute fibres using modified weibull distribution. Compos A Appl Sci Manuf 40(1):54–59. https://doi.org/10.1016/j.compositesa.2008.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisa Mahmoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifeh, A., Mahmoudi, E. & Chaturvedi, A. Sequential fixed-accuracy confidence intervals for the stress–strength reliability parameter for the exponential distribution: two-stage sampling procedure. Comput Stat 35, 1553–1575 (2020). https://doi.org/10.1007/s00180-020-00957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-00957-5

Keywords

Navigation