Skip to main content
Log in

Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We treat this distribution as an integral of the normalizing constant of the Fisher–Bingham distribution on the unit sphere and make use of the partial differential equations for the Fisher–Bingham distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  MathSciNet  MATH  Google Scholar 

  • Castaño-Martínez A, López-Blázquez F (2005) Distribution of a sum of weighted noncentral chi-square variables. Test 14(2):397–415

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen AM (2007) Numerical methods for laplace transform inversion, volume 5 of Numerical methods and algorithms, vol 5. Springer, New York

    Google Scholar 

  • D’Agostino RB, Stephens MA (eds) (1986) Goodness-of-fit techniques, volume 68 of statistics: textbooks and monographs. Marcel Dekker Inc., New York

  • Feller W (1966) An introduction to probability theory and its applications, vol II. Wiley, New York

    MATH  Google Scholar 

  • GSL (2015) GNU scientific library. http://www.gnu.org/software/gsl/

  • Hirotsu C (1986) Cumulative chi-squared statistic as a tool for testing goodness of fit. Biometrika 73(1):165–173

    Article  MathSciNet  MATH  Google Scholar 

  • Koyama T (2013) A holonomic ideal which annihilates the Fisher–Bingham integral. Funkcial Ekvac 56(1):51–61

    Article  MathSciNet  MATH  Google Scholar 

  • Koyama T, Nakayama H, Nishiyama K, Takayama N (2014a) Holonomic gradient descent for the Fisher-Bingham distribution on the \(d\)-dimensional sphere. Comput Stat 29(3–4):661–683

    Article  MathSciNet  MATH  Google Scholar 

  • Koyama T, Nakayama H, Nishiyama K, Takayama N (2014b) The holonomic rank of the Fisher-Bingham system of differential equations. J Pure Appl Algebra 218(11):2060–2071

    Article  MathSciNet  MATH  Google Scholar 

  • Kume A, Walker SG (2009) On the Fisher–Bingham distribution. Stat Comput 19(2):167–172

    Article  MathSciNet  Google Scholar 

  • Kume A, Wood ATA (2005) Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants. Biometrika 92(2):465–476

    Article  MathSciNet  MATH  Google Scholar 

  • Nair VN (1986) On testing against ordered alternatives in analysis of variance models. Biometrika 73(2):493–499

    Article  MathSciNet  MATH  Google Scholar 

  • Nakayama H, Nishiyama K, Noro M, Ohara K, Sei T, Takayama N, Takemura A (2011) Holonomic gradient descent and its application to the Fisher–Bingham integral. Adv Appl Math 47:639–658

    Article  MathSciNet  MATH  Google Scholar 

  • Sei T, Kume A (2015) Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method. Stat Comput 25(2):321–332

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka K (1996) Time series analysis: nonstationary and noninvertible distribution theory. Wiley series in probability and statistics: probability and statistics. Wiley, New York

Download references

Acknowledgments

This work is supported by JSPS Grant-in-Aid for Scientific Research No. 25220001 and Grant-in-Aid for JSPS Fellows No. 02603125. We thank the reviewers for their very constructive comments, which led to substantial improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimichi Takemura.

Appendix: A general form of Proposition 3.1

Appendix: A general form of Proposition 3.1

In Proposition 3.1 we assumed \(\lambda _1 > \lambda _2\). In this appendix we state the following proposition for the general case \(\lambda _1 = \dots = \lambda _m > \lambda _{m+1}\) without a proof. For this case, the integrand for the Fisher–Bingham integral takes its maximum on the \((m-1)\)-dimensional sphere \(S^{m-1}(1)\), rather than on a finite number of points. However by appropriate choice of coordinates and by multiplication of the volume \(\mathrm{Vol}(S^{m-1}(1))\), the derivation of Proposition 5.1 is basically the same as Proposition 3.1.

Proposition 5.1

Assume that

$$\begin{aligned} 0 > \lambda _1 = \dots = \lambda _m > \lambda _{m+1} \ge \dots \ge \lambda _d. \end{aligned}$$

If \(0=\tau _1 = \dots = \tau _m\), then as \(r\rightarrow \infty \),

$$\begin{aligned} f(\lambda ,\tau ,r)&=r^{m-1} S_{m-1} \exp \left( r^2 \lambda _1 -\sum _{i=m+1}^d \frac{\tau _i^2}{4(\lambda _i - \lambda _1)} \right) \\&\qquad \times \frac{\pi ^{(d-m)/2}}{\prod _{i=m}^d (\lambda _1-\lambda _i)^{1/2}} (1 + o(1)), \\ \partial _{\lambda _j} \, f(\lambda ,\tau ,r)&= \frac{r^2}{m} f(\lambda ,\tau ,r)(1+o(1)), \quad j\le m, \\ \partial _{\tau _j} \, f(\lambda ,\tau ,r)&= 0, \quad j\le m, \\ \partial _{\tau _j} \, f(\lambda ,\tau ,r)&= -\frac{\tau _j}{2(\lambda _j-\lambda _1)} f(\lambda ,\tau ,r)(1+o(1)), \quad j>m, \\ \partial _{\lambda _j} f(\lambda ,\tau ,r)&= \left( \frac{1}{2(\lambda _1-\lambda _j)} + \frac{\tau _j^2}{4(\lambda _j-\lambda _1)^2}\right) f(\lambda ,\tau ,r)(1+o(1)), \quad j>m. \end{aligned}$$

If \((\tau _1,\dots ,\tau _m) \ne (0,\dots ,0)\), define \( \gamma = (\tau _1^2 + \dots + \tau _m^2)^{1/2} \). Then, as \(r\rightarrow \infty \),

$$\begin{aligned} f(\lambda ,\tau ,r)&= \exp \left( r^2 \lambda _1 + r\gamma -\sum _{i=m+1}^d \frac{\tau _i^2}{4(\lambda _i - \lambda _1)} \right) \left( \frac{2r}{\gamma }\right) ^{(m-1)/2}\\&\quad \times \frac{ \pi ^{(d-1)/2}}{\prod _{i=m}^d (\lambda _1-\lambda _i)^{1/2}}(1+o(1)),\\ \partial _{\tau _j}\, f(\lambda ,\tau ,r)&= r \frac{\tau _j}{\gamma } f(\lambda ,\tau ,r)(1+o(1)), \quad \tau _j \ne 0, \ j\le m, \\ \partial _{\lambda _j}\, f(\lambda ,\tau ,r)&= r^2 \frac{\tau _j^2}{\gamma ^2} f(\lambda ,\tau ,r)(1+o(1)), \quad \tau _j\ne 0,\ j\le m,\\ \partial _{\tau _j}\, f(\lambda ,\tau ,r)&=0, \quad \tau _j=0, \ j\le m,\\ \partial _{\lambda _j}\, f(\lambda ,\tau ,r)&= \frac{r}{\gamma } f(\lambda ,\tau ,r)(1+o(1)), \quad \tau _j=0,\ j\le m, \\ \partial _{\tau _j}\, f(\lambda ,\tau ,r)&= -\frac{\tau _j}{2(\lambda _j-\lambda _1)} f(\lambda ,\tau ,r)(1+o(1)), \quad j>m, \\ \partial _{\lambda _j}\, f(\lambda ,\tau ,r)&= \left( \frac{1}{2(\lambda _1-\lambda _j)} + \frac{\tau _j^2}{4(\lambda _j-\lambda _1)^2}\right) f(\lambda ,\tau ,r)(1+o(1)), \quad j>m. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, T., Takemura, A. Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables. Comput Stat 31, 1645–1659 (2016). https://doi.org/10.1007/s00180-015-0625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0625-3

Keywords

Navigation