Skip to main content
Log in

Random variate generation and connected computational issues for the Poisson–Tweedie distribution

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

After providing a systematic outline of the stochastic genesis of the Poisson–Tweedie distribution, some computational issues are considered. More specifically, we introduce a closed form for the probability function, as well as its corresponding integral representation which may be useful for large argument values. Several algorithms for generating Poisson–Tweedie random variates are also suggested. Finally, count data connected to the citation profiles of two statistical journals are modeled and analyzed by means of the Poisson–Tweedie distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalen OO (1992) Modelling heterogeneity in survival analysis by the compound Poisson distribution. Ann Appl Probab 2:951–972

    Article  MathSciNet  MATH  Google Scholar 

  • Ahrens JH, Dieter U (1982) Computer generation of Poisson deviates from modified Normal distributions. ACM Trans Math Softw 8:163–179

    Article  MathSciNet  MATH  Google Scholar 

  • Baccini A, Barabesi L, Cioni M, Pisani C (2014) Crossing the hurdle: the determinants of individual scientific performance. Scientometrics 101:2035–2062

    Article  Google Scholar 

  • Barabesi L, Pratelli L (2014a) Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James. Stat Methods Appl 23:345–351

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Pratelli L (2014b) A note on a universal random variate generator for integer-valued random variables. Stat Comput 24:589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Pratelli L (2015) Universal methods for generating random variables with a given characteristic function. J Stat Comput Simul 85:1679–1691

    Article  MathSciNet  Google Scholar 

  • Burrell QL (2014) The individual author’s publication–citation process: theory and practice. Scientometrics 98:725–742

    Article  Google Scholar 

  • Burrell QL, Fenton MR (1993) Yes, the GIGP really does work—and is workable!. J Am Soc Inf Sci 44:61–69

    Article  Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Book  MATH  Google Scholar 

  • Devroye L (1993) A triptych of discrete distribution related to the stable law. Stat Probab Lett 18:349–351

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L (2009) Random variate generation for exponentially and polynomially tilted stable distributions. ACM Trans Model Comput Simul 19, Article 18

  • Dunn PK, Smyth GK (2008) Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Stat Comput 18:73–86

    Article  MathSciNet  Google Scholar 

  • Egghe L (2005) Power laws in the information production process: Lotkaian informetrics. Elsevier, Oxford

    Google Scholar 

  • El-Shaarawi AH, Zhu R, Joe H (2011) Modelling species abundance using the Poisson–Tweedie family. Environmetrics 22:152–164

    Article  MathSciNet  Google Scholar 

  • Esnaola M, Puig P, Gonzalez D, Castelo R, Gonzalez JR (2013) A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. BMC Bioinform 14:254

    Article  Google Scholar 

  • Gerber HU (1991) From the generalized gamma to the generalized negative binomial distribution. Insur Math Econ 10:303–309

    Article  MathSciNet  MATH  Google Scholar 

  • Hao-Chun Chuang H, Oliva R (2014) Estimating retail demand with Poisson mixtures and out-of-sample likelihood. Appl Stoch Models Busin Ind 30:455–463

    Article  MathSciNet  Google Scholar 

  • Hofert M (2011) Sampling exponentially tilted stable distributions. ACM Trans Model Comput Simul 22, Article 3

  • Hougaard P (1986) Survival models for heterogeneous populations derived from stable distributions. Biometrika 73:387–396

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P, Lee MT, Whitmore GA (1997) Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Biometrics 53:1225–1238

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kemp AW, Kotz S (2005) Univariate discrete distributions, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Jöhnk MD (1964) Erzeugung von betaverteilten und gammaverteilten Zufallszahlen. Metrika 8:5–15

    Article  MathSciNet  MATH  Google Scholar 

  • Jørgensen B, Kokonendji CC (2015) Discrete dispersion models and their Tweedie asymptotics. Adv Stat Anal. doi:10.1007/s10182-015-0250-z

  • Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3:697–707

    Article  MathSciNet  MATH  Google Scholar 

  • Kokonendji CC, Dossou-Gbété S, Demétrio CGB (2004) Some discrete exponential dispersion models: Poisson–Tweedie and Hinde–Demétrio classes. SORT 28:201–214

    MathSciNet  MATH  Google Scholar 

  • Lotka AJ (1926) The frequency distribution of scientific productivity. J Wash Acad Sci 16:317–323

    Google Scholar 

  • Marcheselli M, Baccini A, Barabesi L (2008) Parameter estimation for the discrete stable family. Commun Stat Theory Methods 37:815–830

    Article  MathSciNet  MATH  Google Scholar 

  • Rao IKR (1980) The distribution of scientific productivity and social change. J Am Soc Inf Sci 31:111–122

    Article  Google Scholar 

  • Schubert A, Glänzel W (1984) A dynamic look at a class of skew distributions. A model with scientometric applications. Scientometrics 6:149–167

    Article  Google Scholar 

  • Sibuya M (1979) Generalized hypergeometric, digamma and trigamma distributions. Ann Inst Stat Math 31:373–390

    Article  MathSciNet  MATH  Google Scholar 

  • Sichel HS (1985) A bibliometric distribution which really works. J Am Soc Inf Sci 36:314–321

    Article  Google Scholar 

  • Tweedie MCK (1984) An index which distinguishes between some important exponential families. In: Ghosh JK, Roy J (eds) Statistics: applications and new directions, proceedings of the Indian statistical institute golden jubilee international conference. Indian Statistical Institute, Calcutta, pp 579–604

  • Wilson CS (1999) Informetrics. Annu Rev Inf Sci Technol 34:107–247

    Google Scholar 

  • Wolfram Research, Inc. (2008) Mathematica, Version 7.0, Champaign, Illinois

  • Zhu R, Joe H (2009) Modelling heavy-tailed count data using a generalized Poisson-inverse Gaussian family. Stat Probab Lett 79:1695–1703

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers for their valuable comments and suggestions which have improved the early version of the paper. The authors are also grateful to Prof. Luca Pratelli for many useful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Barabesi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (nb 193 KB)

Appendix

Appendix

Result 1

By expanding (1) in exponential and binomial series, it follows that

$$\begin{aligned} G_{X_{\text {PT}}}(s)= & {} e^{\frac{b}{a}(1-c)^a}\,\sum _{m=0}^\infty (-1)^m\, \frac{(b/a)^m}{m!}\,(1-cs)^{am}\\= & {} e^{\frac{b}{a}(1-c)^a}\,\sum _{m=0}^\infty (-1)^m\,\frac{(b/a)^m}{m!}\, \sum _{k=0}^\infty \left( {\begin{array}{c}am\\ k\end{array}}\right) (-cs)^k\\= & {} e^{\frac{b}{a}(1-c)^a}\,\sum _{k=0}^\infty (-cs)^k\,\sum _{m=0}^\infty (-1)^m \left( {\begin{array}{c}am\\ k\end{array}}\right) \,\frac{(b/a)^m}{m!} \end{aligned}$$

and hence

$$\begin{aligned} p_{X_{\text {PT}}}(k)=e^{\frac{b}{a}(1-c)^a}(-c)^k\,\sum _{m=0}^\infty (-1)^m \left( {\begin{array}{c}am\\ k\end{array}}\right) \,\frac{(b/a)^m}{m!}\,I_\mathbb {N}(k)\text {.} \end{aligned}$$

Moreover, by using the straightforward identity \(\left( {\begin{array}{c}am\\ k\end{array}}\right) =\frac{1}{k!}\left. \frac{d^kx^{am}}{dx^k}\right| _{x=1}\), it also holds that

$$\begin{aligned} \sum _{m=0}^\infty (-1)^m\left( {\begin{array}{c}am\\ k\end{array}}\right) \,\frac{(b/a)^m}{m!}= & {} \frac{1}{k!}\left. \frac{d^ke^{-\frac{b}{a}x^a}}{dx^k}\right| _{x=1}=\frac{e^{-\frac{b}{a}}}{k!} \left. \frac{d^ke^{\frac{b}{a}(1-x^a)}}{dx^k}\right| _{x=1}\\= & {} \frac{e^{-\frac{b}{a}}}{k!}\,\sum _{m=0}^k\frac{(b/a)^m}{m!}\left. \frac{d^k(1-x^a)^m}{dx^k}\right| _{x=1}\\= & {} e^{-\frac{b}{a}}\,\sum _{m=0}^k\frac{(b/a)^m}{m!}\,\sum _{j=0}^m(-1)^j \left( {\begin{array}{c}m\\ j\end{array}}\right) \left( {\begin{array}{c}aj\\ k\end{array}}\right) \text {,} \end{aligned}$$

since \(\left. \frac{d^k(1-x^a)^m}{dx^k}\right| _{x=1}=0\) when \(k>m\). Thus, expression (9) promptly follows.

Result 2

On the basis of the expression of \(p_{X_{\text {PT}}}\) given in Result 1, it follows

$$\begin{aligned} G_{X_{\text {PT}}}(s)=e^{\frac{b}{a}[(1-c)^a+1]}\,\sum _{k=0}^\infty (-cs)^k {{\mathrm{E}}}\left[ (-1)^M\left( {\begin{array}{c}aM\\ k\end{array}}\right) \right] \text {,} \end{aligned}$$

where M represents a \(\mathcal {P}(b/a)\) r.v. Hence, it also holds that

$$\begin{aligned} p_{X_{\text {PT}}}(k)=e^{\frac{b}{a}[(1-c)^a+1]}(-c)^k{{\mathrm{E}}}\left[ (-1)^M \left( {\begin{array}{c}aM\\ k\end{array}}\right) \right] \text {.} \end{aligned}$$

Therefore, for \(a\in ]0,1]\), from the previous expression we obtain

$$\begin{aligned} p_{X_{\text {PT}}}(k)\le & {} e^{\frac{b}{a}[(1-c)^a+1]}c^k{{\mathrm{E}}}\left[ \left| \left( {\begin{array}{c}aM\\ k\end{array}}\right) \right| \right] \\\le & {} \frac{b}{a}\left( 1+\frac{b}{a}\right) e^{ \frac{b}{a}[(1-c)^a+1]}c^kk^{-a-1}\text {.} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccini, A., Barabesi, L. & Stracqualursi, L. Random variate generation and connected computational issues for the Poisson–Tweedie distribution. Comput Stat 31, 729–748 (2016). https://doi.org/10.1007/s00180-015-0623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0623-5

Keywords

Navigation