Skip to main content
Log in

Grooving of CFRP with water mist jet–assisted nanosecond pulsed laser: effect of process parameters on removal mechanisms and HAZ formation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Carbon fiber–reinforced plastic (CFRP) processed by laser acquires a large heat-affected zone (HAZ) accompanied by mechanical corrosion due to overmelting and vaporization of the resin matrix. To reduce the thermal effect of laser processing CFRP, this paper investigates the use of siphoned water mist to cool the material. This involves directing a water mist jet at the CFRP, which forms a flowing water film on the surface. The droplets in the mist evaporate and convectively remove excess laser heat, reducing thermal accumulation damage. The effect of process parameters such as water mist jet angle, air pressure, offset distance, laser power, and frequency on the groove morphology and dimensional characteristics is experimentally investigated. The results show that the atomized droplet layer in the flow field of the water mist affects the laser energy transfer, while the velocity of the wall flow field helps to remove the ablated substrate. However, short pulse laser cycles can have a negative effect on controlling the HAZ of the groove. Herein, a finite element model of a siphon water mist jet is developed to simulate the distribution of water film and droplet atomization layer in the wall flow field. The experimental and simulation results demonstrate the potential of water mist jet-assisted laser ablation in enhancing the quality of CFRP cutting, but also highlight the negative effect of the droplet atomization layer in the wall flow field. Furthermore, an analysis has been conducted on the multi-stage, multi-factor coupled removal mechanism in water mist jet-assisted laser grooving of CFRP. This study emphasizes the potential benefits of water mist jet-assisted laser processing for CFRP and provides useful information for selecting process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Du JG, Zhang HZ, Geng YM, Ming WY, He WB, Ma J, Cao Y, Li XK, Liu K (2019) A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram Int 45:18155–18166. https://doi.org/10.1016/j.ceramint.2019.06.112

    Article  Google Scholar 

  2. Zhang YN, Qiao HC, Zhao JB, Cao ZH, Yu YF (2020) Numerical simulation of water jet–guided laser micromachining of CFRP. Mater Today Commun 25:101456. https://doi.org/10.1016/j.mtcomm.2020.101456

    Article  Google Scholar 

  3. Chen L, Li M, Yang X (2022) The feasibility of fast slotting thick CFRP laminate using fiber laser-CNC milling cooperative machining technique. Opt Laser Technol 149:107794. https://doi.org/10.1016/j.optlastec.2021.107794

    Article  Google Scholar 

  4. Altin Karataş M, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  5. Negarestani R, Li L (2013) Fibre laser cutting of carbon fibre–reinforced polymeric composites. P I Mech Eng B-J Eng 227:1755–1766. https://doi.org/10.1177/0954405413490513

    Article  Google Scholar 

  6. El-Hofy M, Helmy MO, Escobar-Palafox G, Kerrigan K, Scaife R, El-Hofy H (2018) Abrasive water jet machining of multidirectional CFRP laminates. Procedia CIRP 68:535–540. https://doi.org/10.1016/j.procir.2017.12.109

    Article  Google Scholar 

  7. Habib S, Okada A (2016) Influence of electrical discharge machining parameters on cutting parameters of carbon fiber-reinforced plastic. Mach Sci Technol 20:99–114. https://doi.org/10.1080/10910344.2015.1133914

    Article  Google Scholar 

  8. Helmy MO, El-Hofy MH, El-Hofy H (2018) Effect of cutting fluid delivery method on ultrasonic assisted edge trimming of multidirectional CFRP composites at different machining conditions. Procedia CIRP 68:450–455. https://doi.org/10.1016/j.procir.2017.12.077

    Article  Google Scholar 

  9. Zhou L, Zhou J, Huang P, Zhang GH, Lin Z, Zhao Z, Huang YX, Jiao H, Long YH (2022) Study on the mechanism of quasi-continuous wave (QCW) fiber laser low-damage processing of carbon fiber-reinforced plastics. Int J Adv Manuf Tech 124:429–447. https://doi.org/10.1007/s00170-022-10374-1

    Article  Google Scholar 

  10. Kong XJ, Dang ZP, Liu XL, Wang MH (2023) A comparative evaluation of laser assisted drilling CFRP with improved machining mechanism. J Mater Process Tech 321:118156. https://doi.org/10.1016/j.jmatprotec.2023.118156

  11. Kononenko TV, Freitag C, Komlenok MS, Onuseit V, Weber R, Graf T, Konov VI (2014) Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses. J Appl Phys 115:103107. https://doi.org/10.1063/1.4868385

  12. Li MJ, Gan GC, Zhang Y, Yang XJ (2019) Thermal damage of CFRP laminate in fiber laser cutting process and its impact on the mechanical behavior and strain distribution. Arch Civ Mech Eng 19:1511–1522. https://doi.org/10.1016/j.acme.2019.08.005

    Article  Google Scholar 

  13. Xu JY, Hu H, Lei YL (2014) Morphological features of silicon substrate by using different frequency laser ablation in air and water. Appl Surf Sci 317:666–671. https://doi.org/10.1016/j.apsusc.2014.08.038

    Article  Google Scholar 

  14. Zhou J, Huang YX, Zhao YW, Jiao H, Liu QY, Long YH (2019) Study on water-assisted laser ablation mechanism based on water layer characteristics. Opt Commun 450:112–121. https://doi.org/10.1016/j.optcom.2019.05.060

    Article  Google Scholar 

  15. Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, Dumkum C (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tool Manu 89:14–28. https://doi.org/10.1016/j.ijmachtools.2014.10.013

    Article  Google Scholar 

  16. Tangwarodomnukun V, Khamwiset K, Qi H (2019) Investigation into laser machining of carbon fiber reinforced plastic in a flowing water layer. Int J Adv Manuf Tech 104:3629–3645. https://doi.org/10.1007/s00170-019-04131-0

    Article  Google Scholar 

  17. Yang J, Chow LC, Pais MR, Ito A (1992) Liquid film thickness and topography determination using Fresnel diffraction and holography. Exp Heat Transfer 5:239–252. https://doi.org/10.1080/08916159208946443

    Article  Google Scholar 

  18. Guo ZF, Guo B, Zhao QL, Liu WC, Zheng Q (2021) Optimisation of spray-mist-assisted laser machining of micro-structures on CVD diamond coating surfaces. Ceram Int 47:22108–22120. https://doi.org/10.1016/j.ceramint.2021.04.232

    Article  Google Scholar 

  19. Alnaimat F (2022) Heat transfer analysis of air-mist evaporative cooling in heat sink. Int J Thermofluids 14:100145. https://doi.org/10.1016/j.ijft.2022.100145

    Article  Google Scholar 

  20. DP Rini RH Chen LC Chow 2002 Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling J Heat Transfer https://doi.org/10.1115/1.1418365

  21. Liu YP, Shen JX, Ma J, Li GC, Zhao ZH, Ni XM, Wang XS (2021) Laser-based measurement and numerical simulation of methane-air jet flame suppression with water mist. Process Saf Environ 148:1033–1047. https://doi.org/10.1016/j.psep.2021.02.028

    Article  Google Scholar 

  22. Mahmud HMI, Moinuddin KAM, Thorpe GR (2016) Experimental and numerical study of high-pressure water-mist nozzle sprays. Fire Safety J 81:109–117. https://doi.org/10.1016/j.firesaf.2016.01.015

    Article  Google Scholar 

  23. Kaakkunen JJJ, Silvennoinen M, Paivasaari K, Vahimaa P (2011) Water-assisted femtosecond laser pulse ablation of high aspect ratio holes. Phys Procedia 12:89–93. https://doi.org/10.1016/j.phpro.2011.03.110

    Article  Google Scholar 

  24. Silvennoinen M, Kaakkunen JJJ, Paivasaari K, Vahimaa P (2013) Water spray assisted ultrashort laser pulse ablation. Appl Surf Sci 265:865–869. https://doi.org/10.1016/j.apsusc.2012.11.135

    Article  Google Scholar 

  25. Markauskas E, Gečys P (2018) Thin water film assisted glass ablation with a picosecond laser. Procedia CIRP 74:328–332. https://doi.org/10.1016/j.procir.2018.08.126

    Article  Google Scholar 

  26. Guo B, Zhang J, Wu MT, Zhao QL, Liu H, Monier A, Wang JH (2020) Water assisted pulsed laser machining of micro-structured surface on CVD diamond coating tools. J Manuf Process 56:591–601. https://doi.org/10.1016/j.jmapro.2020.04.066

    Article  Google Scholar 

  27. Zhou L, Huang P, Jiao H, Zhang GH, Zhao Z, Lin Z, Huang YX, Zhou J, Long YH (2023) Study on mechanism of spray-mist-assisted laser processing of carbon fiber reinforced plastic. Opt Laser Technol 158:108821. https://doi.org/10.1016/j.optlastec.2022.108821

    Article  Google Scholar 

  28. Yang H, Liu HX, Gao RX, Liu X, Yu X, Song F, Liu L (2022) Numerical simulation of paint stripping on CFRP by pulsed laser. Opt Laser Technol 145:107450. https://doi.org/10.1016/j.optlastec.2021.107450

    Article  Google Scholar 

  29. Ohkubo T, Sato Y, Matsunaga E, Tsukamoto M (2017) Three-dimensional numerical simulation during laser processing of CFRP. Appl Surf Sci 417:104–107. https://doi.org/10.1016/j.apsusc.2017.02.249

    Article  Google Scholar 

  30. Tao NR, Chen GY, Fan LC, Wang B, Li MQ, Fang WJ (2021) Temperature-dependent material removal during pulsed laser processing of CFRP composites. Opt Laser Technol 144:107445. https://doi.org/10.1016/j.optlastec.2021.107445

    Article  Google Scholar 

  31. Wang T, Abdelmaksoud R (2021) Interactions of wakes and shock waves with two-phase air/mist cooling in a transonic gas turbine stage. Int J Heat Mass Tran 179:121652. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121652

    Article  Google Scholar 

  32. Park H, Roh J, Oh KC, Cho H, Kim J (2022) Modeling and optimization of water mist system for effective air-cooled heat exchangers. Int J Heat Mass Tran 184:122297. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122297

    Article  Google Scholar 

  33. Liu YJ, Beji T, Thielens M, Tang Z, Fang Z, Merci B (2022) Numerical analysis of a water mist spray: the importance of various numerical and physical parameters, including the drag force. Fire Safety J 127:103515. https://doi.org/10.1016/j.firesaf.2021.103515

    Article  Google Scholar 

  34. Tao YJ, Huai XL, Guo ZY, Yin R (2009) Numerical simulation of spray performance based on the Euler-Lagrange approach. J Therm Sci 18:91–96. https://doi.org/10.1007/s11630-009-0091-8

    Article  Google Scholar 

  35. Yan ZX, Mei XS, Wang WJ, Pan AF, Lin QY, Huang CC (2019) Numerical simulation on nanosecond laser ablation of titanium considering plasma shield and evaporation-affected surface thermocapillary convection. Opt Commun 453:124384. https://doi.org/10.1016/j.optcom.2019.124384

    Article  Google Scholar 

  36. Feng SC, Huang CZ, Wang J, Zhu HT, Yao P, Liu ZQ (2017) An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining. Precis Eng 47:33–45. https://doi.org/10.1016/j.precisioneng.2016.07.002

    Article  Google Scholar 

  37. Li HY, Hao JY, Du ZM, Zhang TW (2022) Study on the suppression of pyrolytic gas flames in red pine wood by water mist. Case Stud Therm Eng 37:102172. https://doi.org/10.1016/j.csite.2022.102172

    Article  Google Scholar 

Download references

Funding

This work was financially supported and funded by Guangxi Science and Technology Base and Talent Project (Guike AD21238020), the National Natural Science Foundation of China (NSFC) (62274045, 52165056, 62364008), China Postdoctoral Science Foundation (2023MD734164), the Innovation Project of Guangxi Graduate Education (YCSW2023291, YCBZ2023129, YCSW2022287, YCBZ2022114), and the Innovation Project of GUET Graduate Education (2023YCXS015, 2023YCXS012).

Author information

Authors and Affiliations

Authors

Contributions

Hui Jiao: conceptualization, investigation, methodology, writing–original draft. Jia Zhou: investigation, review and editing. Yuxing Huang: review and editing. Liao Zhou: investigation. Ze Lin: investigation. Yuhong Long: conceptualization, investigation, methodology, supervision, writing—review and editing. Rujin Lv: supervision, writing—review and editing. Xiaoqing Yang: supervision, writing—review and editing.

Corresponding authors

Correspondence to Yuhong Long, Rujin Lv or Xiaoqing Yang.

Ethics declarations

Ethical approval.

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Zhou, J., Huang, Y. et al. Grooving of CFRP with water mist jet–assisted nanosecond pulsed laser: effect of process parameters on removal mechanisms and HAZ formation. Int J Adv Manuf Technol 132, 3839–3859 (2024). https://doi.org/10.1007/s00170-024-13613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13613-9

Keywords

Navigation