Skip to main content
Log in

Burr formation mechanism and experimental research in longitudinal-torsional ultrasonic-assisted milling Ti-6Al-4 V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium alloy milling is prone to burrs at the edges of the workpiece, which can negatively affect surface integrity and dimensional accuracy, and even lead to part scrap. Ultrasonic vibration–assisted milling technology can effectively inhibit burr generation and improve machining quality. However, the research of ultrasonic vibration–assisted milling on burr inhibition is not clear, so this paper establishes a mathematical model of ultrasonic vibration vertical milling titanium alloy top burr size based on the chip deformation process and specifically analyses the effect of ultrasonic machining parameters on burr through experiments. The experimental results show that the depth of cut has the greatest influence on the burr size, and the ultrasonic vibration has the second greatest influence on the burr. The cutting force and the burr size on both sides of the groove show a trend of “decrease and then increase” with the increase of ultrasonic amplitude. When the ultrasonic amplitude was 3 µm, the cutting forces Fx and Fy were reduced by 34.42% and 31.36%, respectively, and the heights and widths of the burrs on the up milling side and on the down milling side were reduced by 75.49%, 44.33% and 89.16%, 47.82%, respectively, when comparing with no ultrasonic machining. The longitudinal-torsional ultrasonic vibration converted the large piled-up, rolled-up, and serrated burrs into intermittent, small-sized flocculent burrs, which significantly improved the burr morphology and weakened the serrated characteristics of the chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhao Q, Sun Q, Xin S et al (2022) High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process[J]. Mater Sci Eng, A 845:143260. https://doi.org/10.1016/j.msea.2022.143260

    Article  Google Scholar 

  2. Nguyen HD, Pramanik A, Basak AK et al (2022) A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties[J]. J Market Res 18:4641–4661. https://doi.org/10.1016/j.jmrt.2022.04.055

    Article  Google Scholar 

  3. Pimenov DY, Mia M, Gupta MK et al (2021) Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect[J]. J Market Res 11:719–753. https://doi.org/10.1016/j.jmrt.2021.01.031

    Article  Google Scholar 

  4. Aurich JC, Dornfeld D, Arrazola PJ et al (2009) Burrs—analysis, control and removal[J]. CIRP Ann 58(2):519–542. https://doi.org/10.1016/j.cirp.2009.09.004

    Article  Google Scholar 

  5. Jin SY, Pramanik A, Basak AK et al (2020) Burr formation and its treatments—a review. Int J Adv Manuf Technol 107:2189–2210. https://doi.org/10.1007/s00170-020-05203-2

    Article  Google Scholar 

  6. Li L, Zhang Y, Cui X et al (2023) Mechanical behavior and modeling of grinding force: a comparative analysis[J]. J Manuf Process 102:921–954. https://doi.org/10.1016/j.jmapro.2023.07.074

    Article  Google Scholar 

  7. Yang M, Li C, Zhang Y et al (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions[J]. Ceram Int 45(12):14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226

    Article  Google Scholar 

  8. Mingzheng LIU, Changhe LI, Zhang Y et al (2023) Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics[J]. Chin J Aeronaut 36(7):160–193. https://doi.org/10.1016/j.cja.2022.11.005

    Article  Google Scholar 

  9. Yabo Z, Qingshun B, Yangyang S et al (2022) Burr formation mechanism and machining parameter effect in slot micro-milling titanium alloy Ti6Al4V[J]. Int J Adv Manuf Technol 123(5–6):2073–2086. https://doi.org/10.1007/s00170-022-10298-w

    Article  Google Scholar 

  10. Davoudinejad A, Tosello G, Annoni M (2017) Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: a 3D finite element modeling investigation. Int J Precis Eng Manuf 18:1321–1332. https://doi.org/10.1007/s12541-017-0157-6

    Article  Google Scholar 

  11. Qiu XY, Yu Z, Li C et al (2021) Influence of main cutting edge structure on hole defects in CFRP/titanium alloy stacks drilling[J]. J Manuf Process 69:503–513. https://doi.org/10.1016/j.jmapro.2021.07.061

    Article  Google Scholar 

  12. Timata M, Saikaew C (2019) Experimental and simulation study on tool life models in drilling of forging brass using uncoated-WC and AlCrN coated-WC Tools[J]. Coatings 9(12):853. https://doi.org/10.3390/coatings9120853

    Article  Google Scholar 

  13. Duan Z, Wang S, Wang Z et al (2024) Tool wear mechanisms in cold plasma and nano-lubricant multi-energy field coupled micro-milling of Al-Li alloy[J]. Tribol Int 109337. https://doi.org/10.1016/j.triboint.2024.109337

  14. Saha S, Deb S, Bandyopadhyay PP (2023) Tool wear induced burr formation and concomitant reduction in MQL wetting capability in micro-milling[J]. Int J Mech Sci 245:108095. https://doi.org/10.1016/j.ijmecsci.2022.108095

    Article  Google Scholar 

  15. dos Santos AJ, de Oliveira DA, Pereira NFS et al (2024) Effect of conventional and trochoidal milling paths on burr formation during micromilling of grade 4 commercially pure titanium. Arab J Sci Eng 49:1727–1742. https://doi.org/10.1007/s13369-023-07989-1

    Article  Google Scholar 

  16. Lotfi M, Charkhian A, Akbari J (2022) Surface analysis in rotary ultrasonic-assisted milling of CFRP and titanium[J]. J Manuf Process 84:174–182. https://doi.org/10.1016/j.jmapro.2022.10.006

    Article  Google Scholar 

  17. Sun J, Li C, Zhou Z et al (2023) Material removal mechanism and force modeling in ultrasonic vibration-assisted micro-grinding biological bone. Chin J Mech Eng 36:129. https://doi.org/10.1186/s10033-023-00957-8

    Article  Google Scholar 

  18. Yu F, Zhang C, Zhu Q et al (2023) Investigation of ultrasonic mechanism and development of tool wear model in ultrasonic elliptic vibration assisted cutting of stainless steel[J]. Tribol Int 189:108962. https://doi.org/10.1016/j.triboint.2023.108962

    Article  Google Scholar 

  19. Zhang Y, Zhao B, Wang Y et al (2017) Effect of machining parameters on the stability of separated and unseparated ultrasonic vibration of feed direction assisted milling. J Mech Sci Technol 31:851–858. https://doi.org/10.1007/s12206-017-0137-x

    Article  Google Scholar 

  20. Zhao B, Bie W, Wang X, Chang B (2020) Design and experimental investigation on vibration system of longitudinal-torsional ultrasonic drilling TC4 titanium alloy[J]. Acta Aeronauticaet Astronautica Sinica 41(1): 423207–423207. https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2019.23207. Accessed 3 Jan 2024

  21. Liu Q, Xu J, Yu H (2020) Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V. Int J Adv Manuf Technol 108:2917–2928. https://doi.org/10.1007/s00170-020-05593-3

    Article  Google Scholar 

  22. Bin F, Zhonghang Y, Depeng LI et al (2021) Effect of ultrasonic vibration on finished quality in ultrasonic vibration assisted micromilling of Inconel718[J]. Chin J Aeronaut 34(6):209–219. https://doi.org/10.1016/j.cja.2020.09.021

    Article  Google Scholar 

  23. Atif M, Wang X, Xie L et al (2024) Multiscale modelling and experimental analysis of ultrasonic-assisted drilling of GLARE fibre metal laminates[J]. Compos A Appl Sci Manuf 177:107962. https://doi.org/10.1016/j.compositesa.2023.107962

    Article  Google Scholar 

  24. Wei L, Wang D (2020) Effect of ultrasound-assisted vibration on Ti-6Al-4V/Al2024-T351 laminated material processing with geometric tools. Int J Adv Manuf Technol 106:219–232. https://doi.org/10.1007/s00170-019-04637-7

    Article  Google Scholar 

  25. Xu J, Feng P, Feng F et al (2021) Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling[J]. J Mater Process Technol 297:117265. https://doi.org/10.1016/j.jmatprotec.2021.117265

    Article  Google Scholar 

  26. Wang X, Jiao F, Zhang S et al (2023) Optimization model for ultrasonic-assisted dry helical milling of CFRP based on genetic algorithm. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10766-3

    Article  Google Scholar 

  27. Zhu X, Wang W, Jiang R et al (2022) Modeling of burr height in ultrasonic-assisted drilling of DD6 superalloy. Int J Adv Manuf Technol 120:2167–2181. https://doi.org/10.1007/s00170-021-08524-y

    Article  Google Scholar 

  28. Deswal N, Kant R (2023) Radial direction ultrasonic-vibration and laser assisted turning of Al3003 alloy[J]. Materials Research Express 10(4):044004. https://doi.org/10.1088/2053-1591/acce24

    Article  Google Scholar 

  29. Qin S, Zhu L, Wiercigroch M et al (2022) Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling[J]. Int J Mech Sci 227:107375. https://doi.org/10.1016/j.ijmecsci.2022.107375

    Article  Google Scholar 

  30. Ko SL, Dornfeld DA (1991) A study on burr formation mechanism[J]. J Eng Mater Technol 113(1):75–87. https://doi.org/10.1115/1.2903385

    Article  Google Scholar 

  31. Li P, Wang C, Zeng L et al (2023) Analytical modeling of Poisson burr formation in the machining of Al6061 with interface constraint. Int J Adv Manuf Technol 129:353–374. https://doi.org/10.1007/s00170-023-12068-8

    Article  Google Scholar 

  32. Gao G, Xia Z, Su T et al (2021) Cutting force model of longitudinal-torsional ultrasonic-assisted milling Ti-6Al-4V based on tool flank wear[J]. J Mater Process Technol 291:117042. https://doi.org/10.1016/j.jmatprotec.2021.117042

    Article  Google Scholar 

  33. Zhao M, Zhu J, Song S et al (2022) Influence of machining parameters in longitudinal-torsional ultrasonic vibration milling titanium alloy for milling force. Int J Adv Manuf Technol 123:3587–3597. https://doi.org/10.1007/s00170-022-10509-4

    Article  Google Scholar 

  34. Wright PK (1982) Predicting the shear plane angle in machining from workmaterial strain-hardening characteristics[J]. J Manuf Sci Eng 104(3):285–292. https://doi.org/10.1115/1.3185832

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China project “Research on Subsurface Damage Mechanism of High-speed Multidimensional Ultrasound Machining of Ceramic Matrix Composites” (Project Code: 52005164), the Henan Polytechnic University Doctoral Program Fund (B2016-27) “Research on Vehicle Condition Monitoring and Fault Diagnosis Based on Optimized Support Vector Machine”, and the Henan Polytechnic University Doctoral Program Fund (B2012-105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Zhao, M., Zhu, J. et al. Burr formation mechanism and experimental research in longitudinal-torsional ultrasonic-assisted milling Ti-6Al-4 V. Int J Adv Manuf Technol 132, 2315–2331 (2024). https://doi.org/10.1007/s00170-024-13494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13494-y

Keywords

Navigation