Skip to main content
Log in

A comprehensive review on recent laser beam welding process: geometrical, metallurgical, and mechanical characteristic modeling

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Demands for improved productivity, efficiency, and quality pose challenges to the welding industry, significantly the laser beam welding process. As the materials become increasingly sophisticated in their chemical composition to provide ever-better functionally specific properties, a more complete and precise understanding of how such materials can join for optimal effectiveness and efficiency will become essential. The objective of the present study is to review the current literature and discuss future trends. This thorough review study provides a comprehensive systematization and corresponding advances of constituent technologies on laser beam welding process modeling (LBWPM), including types of modeling including characteristics of weld joint (geometrical, metallurgical, and mechanical), monitoring (pre-process, in-process, and post-process), length scale (macroscale, mesoscale, and microscale), and approach of modeling (empirical-based and theoretical-based). The relevant case studies will be evaluated, discussed, and compared. In the end, the general trends, and strong indications of LBWPM, seen in the future, will be discussed. The current study also provides a good foundation for future research and creates awareness of the developmental direction of laser beam welding process modeling in manufacturing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Jokinen T, Karhu M, Kujanpää V (2003) Welding of thick austenitic stainless steel using Nd: yttrium–aluminum–garnet laser with filler wire and hybrid process. J Laser Appl 15(4):220–224

    Article  Google Scholar 

  2. Cao X-J, Jahazi M, Immarigeon J, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188–204

    Article  Google Scholar 

  3. Blackburn J (2012) Laser welding of metals for aerospace and other applications. Elsevier, Welding and joining of aerospace materials, pp 75–108

    Google Scholar 

  4. Hong K-M, Shin YC (2017) Prospects of laser welding technology in the automotive industry: a review. J Mater Process Technol 245:46–69

    Article  Google Scholar 

  5. Subashini L, Prabhakar KP, Ghosh S, Padmanabham G (2020) Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections—understanding the role of filler wire addition. Int J Adv Manuf Technol 107:1581–1594

    Article  Google Scholar 

  6. Wang J, Fu X, Zhang L, Zhang Z, Liu J, Chen S (2021) A short review on laser welding/brazing of aluminum alloy to steel. Int J Adv Manuf Technol 112:2399–2411

    Article  Google Scholar 

  7. Sadeghian A, Iqbal N (2022) A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing. Opt Laser Technol 146:107595

    Article  Google Scholar 

  8. Myhr O, Grong Ø, Fjær H, Marioara C (2004) Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater 52(17):4997–5008

    Article  Google Scholar 

  9. Ninh NT, Wahab MA (1995) The effect of residual stresses and weld geometry on the improvement of fatigue life. J Mater Process Technol 48(1–4):581–8

    Article  Google Scholar 

  10. Sun X, Stephens EV, Khaleel MA (2008) Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions. Eng Fail Anal 15(4):356–367

    Article  Google Scholar 

  11. da Silva BL, Ferreira J, Araújo J (2012) Influence of notch geometry on the estimation of the stress intensity factor threshold by considering the theory of critical distances. Int J Fatigue 42:258–270

    Article  Google Scholar 

  12. Konjatić P, Kozak D, Gubeljak N (2012) The influence of the weld width on fracture behaviour of the heterogeneous welded joint. Trans Tech Publ, Key Engineering Materials

    Google Scholar 

  13. Morris Jr J (2001) The influence of grain size on the mechanical properties of steel

  14. Zhang X, Mi G, Wang C (2020) Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint. Opt Laser Technol 122:105878

    Article  Google Scholar 

  15. Farrar R, Harrison P (1987) Acicular ferrite in carbon-manganese weld metals: an overview. J Mater Sci 22:3812–3820

    Article  Google Scholar 

  16. Ohkita S, Horii Y (1995) Recent development in controlling the microstructure and properties of low alloy steel weld metals. ISIJ Int 35(10):1170–1182

    Article  Google Scholar 

  17. Jin D, Hou C, Shen L (2021) Effect of welding residual stress on the performance of CFST tubular joints. J Constr Steel Res 184:106827

    Article  Google Scholar 

  18. Zhang YH, Smith S, Wei L, Johnston C, Stacey A (2013). Measurement and modelling of residual stresses in offshore circumferential welds. Int Conf Offshore Mech Arct Eng, Am Soc Mech Eng

  19. Talabi SI, Owolabi OB, Adebisi JA, Yahaya T (2014) Effect of welding variables on mechanical properties of low carbon steel welded joint. Adv Prod Eng Manag 9(4):181–186

    Google Scholar 

  20. Dowden J (2009) The theory of laser materials processing. Heat Mass Trans Modern Technol: 95–128

  21. Yang J, Oliveira J, Li Y, Tan C, Gao C, Zhao Y, Yu Z (2022) Laser techniques for dissimilar joining of aluminum alloys to steels: a critical review. J Mater Process Technol 301:117443

    Article  Google Scholar 

  22. Gonçalves LF, Duarte FM, Martins CI, Paiva MC (2021) Laser welding of thermoplastics: an overview on lasers, materials, processes and quality. Infrared Phys Technol 119:103931

    Article  Google Scholar 

  23. Parimanik SR, Mahapatra TR, Mishra D (2023) A Systematic Literature Review on Laser Welding of NiTi SMA. Lasers Manuf Mater Proc 10(1):77–117

    Article  Google Scholar 

  24. Junke JI, Jihao XU, Chenghu JI, SHENG L, Haolei RU, Hongbo XI (2023). Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint: a review. Chinese J Aeronautics

  25. Norouzian M, Elahi MA, Plapper P (2023). A review: suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions. J Adv Join Proc: 100139

  26. Kang S, Lee K, Kang M, Jang YH, Kim C (2023) Weld-penetration-depth estimation using deep learning models and multisensor signals in Al/Cu laser overlap welding. Opt Laser Technol 161:109179

    Article  Google Scholar 

  27. Franco A, Romoli L, Musacchio A (2014) Modelling for predicting seam geometry in laser beam welding of stainless steel. Int J Therm Sci 79:194–205

    Article  Google Scholar 

  28. Kozak J (2022) Prediction of weld deformations by numerical methods-review. Pol Marit Res 29(1):97–107

    Article  Google Scholar 

  29. Hashemzadeh M, Garbatov Y, Soares CG (2022) Hybrid-laser welding-induced distortions and residual stresses analysis of large-scale stiffener panel. Ocean Eng 245:110411

  30. Mohan A, Ceglarek D, Franciosa P, Auinger M (2023). Numerical study of beam oscillation and its effect on the solidification parameters and grain morphology in remote laser welding of high-strength aluminium alloys. Sci Technol Weldd Join: 1–10

  31. Hargreaves J, Moore S, Yuan G, Liu D, Tipping H, Abbott R, Tufnail J, Dawson H, Martin TL (2023). Microstructural modelling and characterisation of laser-keyhole welded Eurofer 97. Materials & Design: 111614

  32. Gao S, Geng S, Jiang P, Han C, Ren L (2022) Numerical study on the effect of residual stress on mechanical properties of laser welds of aluminum alloy 2024. Opt Laser Technol 146:107580

    Article  Google Scholar 

  33. Zhang Z, Huang Y, Qin R, Ren W, Wen G (2021) XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: experiment study and modelling. J Manuf Process 64:30–44

    Article  Google Scholar 

  34. Chen L, Yang T, Zhuang Y, Chen W (2021) The multi-objective optimization modelling for properties of 301 stainless steel welding joints in ultra-narrow gap laser welding. Weld World 65(7):1333–1345

    Article  Google Scholar 

  35. Frostevarg J (2018) Factors affecting weld root morphology in laser keyhole welding. Opt Lasers Eng 101:89–98

    Article  Google Scholar 

  36. Nabavi SF, Farshidianfar MH, Farshidianfar A, Beidokhti B (2021). Physical-based methodology for prediction of weld bead characteristics in the laser edge welding process. Optik: 166917

  37. Wei L, Dean D, Murakawa H (2005) Measurement of inherent deformations in typical weld joints using inverse analysis (Part2) Prediction of welding distortion of large structure. Trans JWRI 34(1):113–123

    Google Scholar 

  38. Villaret V, Deschaux-Beaume F, Bordreuil C, Fras G, Chovet C, Petit B, Faivre L (2013) Characterization of gas metal arc welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires. Mater Des 51:474–483

    Article  Google Scholar 

  39. Kou S (2003) Welding metallurgy. New Jersey, USA 431(446):223–225

    Google Scholar 

  40. Abioye T, Olugbade T, Ogedengbe T (2017) Welding of dissimilar metals using gas metal arc and laser welding techniques: a review. J Emerg Trends Eng Appl Sci 8(6):225–228

    Google Scholar 

  41. Jackson K (1971) Solidification. American Society for Metals: Metals Park, OH: 141

  42. Inoue H, Koseki T, Okita S, Fuji M (1997) Solidification and transformation behaviour of austenitic stainless steel weld metals solidified as primary austenite: study of solidification and subsequent transformation of Cr-Ni stainless steel weld metals (1st Report). Weld Int 11(11):876–887

    Article  Google Scholar 

  43. Farshidianfar MH (2017) Real-time closed-loop control of microstructure and geometry in laser materials processing. University of Waterloo, PhD

    Google Scholar 

  44. Saluja R, Moeed K (2012) The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304L and 316L stainless steel welds. Int J Eng Sci Technol 4(5):2206–2216

    Google Scholar 

  45. Suutala N (1983) Effect of solidification conditions on the solidification mode in austenitic stainless steels. Metall Trans A 14(1):191–197

    Article  Google Scholar 

  46. Pujar M, Dayal R, Gill T, Malhotra S (2005) Evaluation of microstructure and electrochemical corrosion behavior of austenitic 316 stainless steel weld metals with varying chemical compositions. J Mater Eng Perform 14(3):327–342

    Article  Google Scholar 

  47. Kotecki D, Siewert T (1992) WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178

    Google Scholar 

  48. Zhang Z, Li B, Zhang W, Lu R, Wada S, Zhang Y (2020) Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks. J Manuf Syst 54:348–360

    Article  Google Scholar 

  49. Singh SS, Praneeth RV, Sankalp VS, Sashank SS (2022). Welding, mechanical properties and microstructure of different grades of austenitic stainless steels: a review. Mater Today: Proc

  50. Masubuchi K (2013) Analysis of welded structures: residual stresses, distortion, and their consequences. Elsevier

    Google Scholar 

  51. Sirohi S, Pandey SM, Tiwari V, Bhatt D, Fydrych D, Pandey C (2023) Impact of laser beam welding on mechanical behaviour of 2.25 Cr–1Mo (P22) steel. Int J Press Vessel Piping 201:104867

    Article  Google Scholar 

  52. Naik AB, Reddy AC (2018) Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Therm Sci Eng Prog 8:327–339

    Google Scholar 

  53. Sokolov M, Salminen A, Kuznetsov M, Tsibulskiy I (2011) Laser welding and weld hardness analysis of thick section S355 structural steel. Mater Des 32(10):5127–5131

    Article  Google Scholar 

  54. Mansur VM, de Figueiredo Mansur RA, de Carvalho SM, de Siqueira RHM, de Lima MSF (2021) Effect of laser welding on microstructure and mechanical behaviour of dual phase 600 steel sheets. Heliyon 7(12):e08601

  55. Barsoum Z, Jonsson B (2011) Influence of weld quality on the fatigue strength in seam welds. Eng Fail Anal 18(3):971–979

    Article  Google Scholar 

  56. Bachmann M, Artinov A, Meng X, Putra SN, Rethmeier M (2023). Challenges in dynamic heat source modeling in high-power laser beam welding. J Laser Appl 35(4).

  57. Stache NC, Stollenwerk A, Gedicke J, Olowinsky A, Knepper A, Aach T (2009) Automatic calibration of a scanner-based laser welding system. J Laser Appl 21(1):10–15

    Article  Google Scholar 

  58. Luo M, Shin YC (2015) Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding. Opt Lasers Eng 64:59–70

    Article  Google Scholar 

  59. Cai W, Wang J, Jiang P, Cao L, Mi G, Zhou Q (2020) Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: a critical review of recent literature. J Manuf Syst 57:1–18

    Article  Google Scholar 

  60. Kaierle S, Ungers M, Franz C, Mann S, Abels P (2010) Understanding the laser process: new approaches for process monitoring in laser materials processing. Wiley Online Library 7:49–52

    Google Scholar 

  61. Kawahito Y, Ohnishi T, Katayama S (2009) In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding. J Phys D Appl Phys 42(8):085501

  62. You D, Gao X, Katayama S (2014) WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Trans Industr Electron 62(1):628–636

    Article  Google Scholar 

  63. Otto A, Schmidt M (2010) Towards a universal numerical simulation model for laser material processing. Phys Procedia 5:35–46

    Article  Google Scholar 

  64. Geiger M, Leitz K-H, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng Res Devel 3(2):127–136

    Article  Google Scholar 

  65. Abderrazak K, Salem WB, Mhiri H, Lepalec G, Autric M (2008) Modelling of CO2 laser welding of magnesium alloys. Opt Laser Technol 40(4):581–588

    Article  Google Scholar 

  66. Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA, Carlson NN, Newman CK, Haut T, Bakosi J, Gibbs JW (2017) Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr Opin Solid State Mater Sci 21(4):198–206

    Article  Google Scholar 

  67. (2023). Sub-projects structure. from https://www.for5134.science/en/teilprojekte/. Accessed  2023/10/03

  68. Duggirala A, Kalvettukaran P, Acherjee B, Mitra S (2021) Numerical simulation of the temperature field, weld profile, and weld pool dynamics in laser welding of aluminium alloy. Optik 247:167990

    Article  Google Scholar 

  69. Faraji AH, Maletta C, Barbieri G, Cognini F, Bruno L (2021) Numerical modeling of fluid flow, heat, and mass transfer for similar and dissimilar laser welding of Ti-6Al-4V and Inconel 718. Int J Adv Manuf Technol 114(3):899–914

    Article  Google Scholar 

  70. Sun J, Liu X, Tong Y, Deng D (2014) A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530

    Article  Google Scholar 

  71. Gobbi C (2016) Low cost thermal imaging system for welding applications. University of Waterloo, Master of Applied Science

    Google Scholar 

  72. Mi G, Xiong L, Wang C, Hu X, Wei Y (2016) A thermal-metallurgical-mechanical model for laser welding Q235 steel. J Mater Process Technol 238:39–48

    Article  Google Scholar 

  73. Gao Z, Jiang P, Mi G, Cao L, Liu W (2018) Investigation on the weld bead profile transformation with the keyhole and molten pool dynamic behavior simulation in high power laser welding. Int J Heat Mass Transf 116:1304–1313

    Article  Google Scholar 

  74. Chen L, Mi G, Zhang X, Wang C (2019) Numerical and experimental investigation on microstructure and residual stress of multi-pass hybrid laser-arc welded 316L steel. Mater Des 168:107653

    Article  Google Scholar 

  75. Assuncao E, Williams S, Yapp D (2012) Interaction time and beam diameter effects on the conduction mode limit. Opt Lasers Eng 50(6):823–828

    Article  Google Scholar 

  76. Assuncao E, Williams S (2014) Effect of material properties on the laser welding mode limits. J Laser Appl 26(1):012008

    Article  Google Scholar 

  77. Farrokhi F, Endelt B, Kristiansen M (2019) A numerical model for full and partial penetration hybrid laser welding of thick-section steels. Opt Laser Technol 111:671–686

    Article  Google Scholar 

  78. Wiklund, G., Akselsen, O., Sørgjerd, A.J. and Kaplan, A.F., 2014. Geometrical aspects of hot cracks in laser-arc hybrid welding. J Laser Appl 26(1)

  79. Kristiansen M, Farrokhi F, Kristiansen E, Villumsen S (2017) Application of hybrid laser arc welding for the joining of large offshore steel foundations. Phys Procedia 89:197–204

    Article  Google Scholar 

  80. Farrokhi F, Nielsen SE, Schmidt R, Pedersen S, Kristiansen M (2015) Effect of cut quality on hybrid laser arc welding of thick section steels. Phys Procedia 78:65–73

    Article  Google Scholar 

  81. Bunaziv I, Frostevarg J, Akselsen OM, Kaplan AF (2018) Process stability during fiber laser-arc hybrid welding of thick steel plates. Opt Lasers Eng 102:34–44

    Article  Google Scholar 

  82. Reisgen U, Olschok S, Weinbach M, Engels O (2017). Welding of high thickness steel plates using a fiber coupled diode laser with 50 kW of output power. Lasers Manuf Conf, München, Germany.

  83. Pan Q, Mizutani M, Kawahito Y, Katayama S (2016) High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates. J Laser Appl 28(1):012004

    Article  Google Scholar 

  84. Gebhardt MO, Gumenyuk A, Quiroz Penaranda V, Rethmeier M (2012) Laser/GMA hybrid welding of thick-walled precision pipes. Weld Cut 11(5):312–318

    Google Scholar 

  85. Cao X, Wanjara P, Huang J, Munro C, Nolting A (2011) Hybrid fiber laser–Arc welding of thick section high strength low alloy steel. Mater Des 32(6):3399–3413

    Article  Google Scholar 

  86. Farrokhi F, Larsen RM, Kristiansen M (2017) Single-pass hybrid laser welding of 25 mm thick steel. Phys Procedia 89:49–57

    Article  Google Scholar 

  87. Vollertsen F, GrÜnenwald S, Rethmeier M, Gumenyuk A, Reisgen U, Olschok S (2010) Welding thick steel plates with fibre lasers and GMAW. Weld World 54(3):R62–R70

    Article  Google Scholar 

  88. Rethmeier M, Gook S, Lammers M, Gumenyuk A (2009) Laser-hybrid welding of thick plates up to 32 mm using a 20 kW fibre laser. Quart J Jpn Weld Soc 27(2):74s–79s

    Article  Google Scholar 

  89. Li G, Zhang C, Gao M, Zeng X (2014) Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater Des 61:239–250

    Article  Google Scholar 

  90. Morgan S, and S Williams (2002). Hybrid laser conduction welding. 55th Annual Assembly of International Institute of Welding

  91. Kawahito Y, Mizutani M, Katayama S (2009) High quality welding of stainless steel with 10 kW high power fibre laser. Sci Technol Weld Joining 14(4):288–294

    Article  Google Scholar 

  92. Ramasamy S, Albright C (2001) CO2 and Nd–YAG laser beam welding of 5754–O aluminium alloy for automotive applications. Sci Technol Weld Join 6(3):182–190

    Article  Google Scholar 

  93. Steen WM, Mazumder J (2010). Laser material processing, springer science & business media

  94. Xie X, Zhou J, Long J (2021) Numerical study on molten pool dynamics and solute distribution in laser deep penetration welding of steel and aluminum. Opt Laser Technol 140:107085

    Article  Google Scholar 

  95. Yuce C, Karpat F, Yavuz N (2019) Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel–aluminum joints. Int J Adv Manuf Technol 104(5):2693–2704

    Article  Google Scholar 

  96. Wang Y, Jiang P, Zhao J, Geng S (2021) Effects of energy density attenuation on the stability of keyhole and molten pool during deep penetration laser welding process: A combined numerical and experimental study. Int J Heat Mass Transf 176:121410

  97. Unni AK, Muthukumaran V (2022) Modeling of heat transfer, fluid flow, and weld pool dynamics during keyhole laser welding of 316 LN stainless steel using hybrid conical-cylindrical heat source. Int J Adv Manuf Technol 122(9):3623–3645

    Article  Google Scholar 

  98. Zhang L, Zhang J, Zhang G, Bo W, Gong S (2011) An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding. J Phys D Appl Phys 44(13):135201

    Article  Google Scholar 

  99. Tenner F, Brock C, Gürtler F-J, Klämpfl F, Schmidt M (2014) Experimental and numerical analysis of gas dynamics in the keyhole during laser metal welding. Phys Procedia 56:1268–1276

    Article  Google Scholar 

  100. Lankalapalli KN, Tu JF, Gartner M (1996) A model for estimating penetration depth of laser welding processes. J Phys D Appl Phys 29(7):1831

    Article  Google Scholar 

  101. Lampa C, Kaplan AF, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30(9):1293

    Article  Google Scholar 

  102. Lankalapalli KN, Tu JF, Leong KH, Gartner M (1999). Laser weld penetration estimation using temperature measurements

  103. Tsai F-R, Kannatey-Asibu E Jr (2000) Modeling of conduction mode laser welding process for feedback control. J Manuf Sci Eng 122(3):420–428

    Article  Google Scholar 

  104. Zhao H, DebRoy T (2001) Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metall and Mater Trans B 32(1):163–172

    Article  Google Scholar 

  105. Park YW, Park H, Rhee S, Kang M (2002) Real time estimation of CO2 laser weld quality for automotive industry. Opt Laser Technol 34(2):135–142

    Article  Google Scholar 

  106. Casalino G, Minutolo FMC (2004) A model for evaluation of laser welding efficiency and quality using an artificial neural network and fuzzy logic. Proc Inst Mech Eng, Part B: J Eng Manuf 218(6):641–646

    Article  Google Scholar 

  107. Du H, Hu L, Liu J, Hu X (2004) A study on the metal flow in full penetration laser beam welding for titanium alloy. Comput Mater Sci 29(4):419–427

    Article  Google Scholar 

  108. Benyounis K, Olabi A, Hashmi M (2005) Effect of laser welding parameters on the heat input and weld-bead profile. J Mater Process Technol 164:978–985

    Article  Google Scholar 

  109. Balasubramanian K, Buvanashekaran G, Sankaranarayanasamy K (2010) Modeling of laser beam welding of stainless steel sheet butt joint using neural networks. CIRP J Manuf Sci Technol 3(1):80–84

    Article  Google Scholar 

  110. Hann DB, Iammi J, Folkes J (2010). Keyholing or conduction–prediction of laser penetration depth. Proceedings of the 36th International MATADOR Conference, Springer

  111. Tobar M, Lamas M, Yáñez A, Sánchez-Amaya J, Boukha Z, Botana F (2010) Experimental and simulation studies on laser conduction welding of AA5083 aluminium alloys. Phys Procedia 5:299–308

    Article  Google Scholar 

  112. Hann D, Iammi J, Folkes J (2011) A simple methodology for predicting laser-weld properties from material and laser parameters. J Phys D Appl Phys 44(44):445401

    Article  Google Scholar 

  113. Luo M, Shin YC (2015) Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network. Int J Adv Manuf Technol 81(1):263–276

    Article  Google Scholar 

  114. Zhang Y, Gao X, Katayama S (2015) Weld appearance prediction with BP neural network improved by genetic algorithm during disk laser welding. J Manuf Syst 34:53–59

    Article  Google Scholar 

  115. Petković D (2017) Prediction of laser welding quality by computational intelligence approaches. Optik 140:597–600

    Article  Google Scholar 

  116. Artinov A, Bachmann M, Rethmeier M (2018) Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. Int J Heat Mass Transf 122:1003–1013

    Article  Google Scholar 

  117. Rong Y, Mi G, Xu J, Huang Y, Wang C (2018) Laser penetration welding of ship steel EH36: a new heat source and application to predict residual stress considering martensite phase transformation. Mar Struct 61:256–267

    Article  Google Scholar 

  118. Lei Z, Shen J, Wang Q, Chen Y (2019) Real-time weld geometry prediction based on multi-information using neural network optimized by PCA and GA during thin-plate laser welding. J Manuf Process 43:207–217

    Google Scholar 

  119. Liu B, Jin W, Lu A, Liu K, Wang C, Mi G (2020) Optimal design for dual laser beam butt welding process parameter using artificial neural networks and genetic algorithm for SUS316L austenitic stainless steel. Opt Laser Technol 125:106027

  120. Li Z, Rostam K, Panjehpour A, Akbari M, Karimipour A, Rostami S (2020) Experimental and numerical study of temperature field and molten pool dimensions in dissimilar thickness laser welding of Ti6Al4V alloy. J Manuf Process 49:438–446

    Article  Google Scholar 

  121. Khan MS, Shahabad S, Yavuz M, Duley W, Biro E, Zhou Y (2021) Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels. J Manuf Process 67:535–544

    Article  Google Scholar 

  122. Le-Quang T, Faivre N, Vakili-Farahani F, Wasmer K (2021) Energy-efficient laser welding with beam oscillating technique–A parametric study. J Clean Prod 313:127796

    Article  Google Scholar 

  123. Nabavi SF, Farshidianfar MH, Farshidianfar A, Beidokhti B (2021) Physical-based methodology for prediction of weld bead characteristics in the laser edge welding process. Optik 241:166917

    Article  Google Scholar 

  124. Liu Z, Jin X, Li J, Hao Z, Zhang J (2022) Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding. Adv Eng Softw 172:103200

  125. Busto V, Coviello D, Lombardi A, De Vito M, Sorgente D (2022) Thermal finite element modeling of the laser beam welding of tailor welded blanks through an equivalent volumetric heat source. Int J Adv Manuf Technol 119(1):137–148

    Article  Google Scholar 

  126. Jia Y, Saadlaoui Y, Hamdi H, Sijobert J, Roux J-C, Bergheau J-M (2022) An experimental and numerical case study of thermal and mechanical consequences induced by laser welding process. Case Stud Therm Eng 35:102078

    Article  Google Scholar 

  127. Dave F, Ali MM, Mokhtari M, Sherlock R, McIlhagger A, Tormey D (2022) Effect of laser processing parameters and carbon black on morphological and mechanical properties of welded polypropylene. Opt Laser Technol 153:108216

    Article  Google Scholar 

  128. Fan X, Qin G, Jiang Z, Wang H (2023) Comparative analysis between the laser beam welding and low current pulsed GMA assisted high-power laser welding by numerical simulation. J Mater Res Technol 22:2549–2565

    Google Scholar 

  129. Ke W, Zeng Z, Oliveira J, Peng B, Shen J, Tan C, Song X, Yan W (2023) Heat transfer and melt flow of keyhole, transition and conduction modes in laser beam oscillating welding. Int J Heat Mass Transf 203:123821

    Article  Google Scholar 

  130. Tan C, Liu Y, Xu B, Wang H, Liu F, Gong X, Zeng Z, Chen B, Song X (2023) Numerical and experimental study of thermal fluid flow and keyhole dynamic in laser welding of aluminum alloy assisted by electromagnetic field. Opt Laser Technol 157:108718

    Article  Google Scholar 

  131. Zhao J, Wang J, Kang X, Wang X, Zhan X (2023) Effect of beam oscillation and oscillating frequency induced heat accumulation on microstructure and mechanical property in laser welding of Invar alloy. Opt Laser Technol 158:108831

    Article  Google Scholar 

  132. Lu Y, Deng Y, Shi L, Jiang L, Gao M (2023) Numerical simulation of thermal flow dynamics in oscillating laser welding of aluminum alloy. Opt Laser Technol 159:109003

    Article  Google Scholar 

  133. Tien NT, Lo Y-L, Raza MM, Chen C-Y, Chiu C-P (2023) Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects. Opt Laser Technol 159:109022

    Article  Google Scholar 

  134. Zhao X, Chen J, Zhang W, Chen H (2023) A study on weld morphology and periodic characteristics evolution of circular oscillating laser beam welding of SUS301L-HT stainless steel. Opt Laser Technol 159:109030

  135. Surwase SS, Bhosle SP (2023). Investigating the effect of residual stresses and distortion of laser welded joints for automobile chassis and optimizing weld parameters using random forest based grey wolf optimizer. Weld Int. 1–22

  136. Huang H, Tsutsumi S, Wang J, Li L, Murakawa H (2017) High performance computation of residual stress and distortion in laser welded 301L stainless sheets. Finite Elem Anal Des 135:1–10

    Article  Google Scholar 

  137. Murakawa H, Deng D, Ma N (2010) Concept of inherent strain, inherent stress, inherent deformation and inherent force for prediction of welding distortion and residual stress. Trans JWRI 39(2):103–105

    Google Scholar 

  138. Kim JW, Jang BS, Kim YT, San Chun K (2013) A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I: proposal of a heat source model. Int J Naval Arch Ocean Eng 5(3):348–363

    Article  Google Scholar 

  139. Rong Y, Huang Y, Zhang G, Mi G, Shao W (2017) Laser beam welding of 316L T-joint: microstructure, microhardness, distortion, and residual stress. Int J Adv Manuf Technol 90(5):2263–2270

    Article  Google Scholar 

  140. Rong Y, Zhang G, Huang Y (2017) Study on deformation and residual stress of laser welding 316L T-joint using 3D/shell finite element analysis and experiment verification. Int J Adv Manuf Technol 89:2077–2085

    Article  Google Scholar 

  141. Huang H, Wang J, Li L, Ma N (2016) Prediction of laser welding induced deformation in thin sheets by efficient numerical modeling. J Mater Process Technol 227:117–128

    Article  Google Scholar 

  142. Xu J, Chen C, Lei T, Wang W, Rong Y (2019) Inhomogeneous thermal-mechanical analysis of 316L butt joint in laser welding. Opt Laser Technol 115:71–80

    Article  Google Scholar 

  143. Evdokimov A, Doynov N, Ossenbrink R, Obrosov A, Weiß S, Michailov V (2021) Thermomechanical laser welding simulation of dissimilar steel-aluminum overlap joints. Int J Mech Sci 190:106019

  144. Ragavendran M, Vasudevan M (2021) Effect of laser and hybrid laser welding processes on the residual stresses and distortion in AISI type 316L (N) stainless steel weld joints. Metall Mater Trans B 52(4):2582–2603

    Article  Google Scholar 

  145. Barat K, Kumar CN, Patil G, Panbarasu K, Venkateswarlu K (2023) Defectometry, distortion analysis and metallurgical properties in the keyhole and conduction mode of laser beam welding of Al–Mg–Sc alloy butt joints. Opt Laser Technol 162:109248

    Article  Google Scholar 

  146. Bodaghi F, Movahedi M, Kokabi A (2023) Estimation of solidification cracking susceptibility in Al–Si–Cu alloy weld: effects of anisotropic permeability and deformation orientation. J Market Res 23:2351–2361

    Google Scholar 

  147. Kou S (2003) Solidification and liquation cracking issues in welding. Jom 55:37–42

    Article  Google Scholar 

  148. Liu J, Rao Z, Liao S, Wang P-C (2014) Modeling of transport phenomena and solidification cracking in laser spot bead-on-plate welding of AA6063-T6 alloy. Part II—simulation results and experimental validation. Int J Adv Manuf Technol 74:285–296

    Article  Google Scholar 

  149. Soysal T, Kou S (2020) Role of liquid backfilling in reducing solidification cracking in aluminium welds. Sci Technol Weld Join 25(5):415–421

    Article  Google Scholar 

  150. Wang L, Gao M, Zhang C, Zeng X (2016) Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater Des 108:707–717

    Article  Google Scholar 

  151. Balasubramanian K, Raghavendran S, Balusamy V (2011) Studies on the effect of mechanical vibration on the microstructure of the weld metal. Int J Tech Eng Syst 2(3):253–256

    Google Scholar 

  152. Kurz W, Fisher D (1981) Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall 29(1):11–20

    Article  Google Scholar 

  153. Du Z, Sun X, Ng FL, Chew Y, Tan C, Bi G (2021) Thermo-metallurgical simulation and performance evaluation of hybrid laser arc welding of chromium-molybdenum steel. Mater Des 210:110029

    Article  Google Scholar 

  154. Han SW, Cho WI, Zhang LJ, Na SJ (2021) Coupled simulation of thermal-metallurgical-mechanical behavior in laser keyhole welding of AH36 steel. Mater Des 212:110275

    Article  Google Scholar 

  155. Tan W, Bailey NS, Shin YC (2011) A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Comput Mater Sci 50(9):2573–2585

    Article  Google Scholar 

  156. Wang L, Wei Y, Zhan X, Yu F, Cao X, Gu C, Ou W (2017) Simulation of dendrite growth in the laser welding pool of aluminum alloy 2024 under transient conditions. J Mater Process Technol 246:22–29

    Article  Google Scholar 

  157. Geng S, Jiang P, Ai Y, Chen R, Cao L, Han C, Liu W, Liu Y (2018) Cellular automaton modeling for dendritic growth during laser beam welding solidification process. J Laser Appl 30(3):032406

    Article  Google Scholar 

  158. Lingda X, Guoli Z, Gaoyang M, Chunming W, Ping J (2021) A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool. J Alloy Compd 858:157669

    Article  Google Scholar 

  159. Ren Y, Lin X, Fu X, Tan H, Chen J, Huang W (2017) Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming. Acta Mater 132:82–95

    Article  Google Scholar 

  160. Benyounis KY, Olabi AG, Hashmi MSJ (2008) Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt Laser Technol 40(1):76–87

    Article  Google Scholar 

  161. Chen L, Yang T, Zhuang Y, Chen W (2021) The multi-objective optimization modelling for properties of 301 stainless steel welding joints in ultra-narrow gap laser welding. Weld World 65:1333–1345

    Article  Google Scholar 

  162. Li Y, Xiong M, He Y, Xiong J, Tian X, Mativenga P (2022) Multi-objective optimization of laser welding process parameters: the trade-offs between energy consumption and welding quality. Opt Laser Technol 149:107861

    Article  Google Scholar 

  163. Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37(9):1014–1021

    Article  Google Scholar 

  164. Banerjee N, Biswas A, Kumar M, Sen A, Maity S (2022) Modeling of laser welding of stainless 1679 steel using artificial neural networks. Materials Today: Proceedings

  165. Hall E (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc. Sect B 64(9):747

    Article  Google Scholar 

  166. Rodrıguez R, Gutierrez I (2003) Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mater Sci Eng, A 361(1–2):377–384

    Article  Google Scholar 

  167. Tiryakioğlu M (2015) On the relationship between Vickers hardness and yield stress in Al–Zn–Mg–Cu Alloys. Mater Sci Eng, A 633:17–19

    Article  Google Scholar 

  168. Tiryakioğlu M, Robinson J, Salazar-Guapuriche M, Zhao Y, Eason P (2015) Hardness–strength relationships in the aluminum alloy 7010. Mater Sci Eng, A 631:196–200

    Article  Google Scholar 

  169. Zou J, Han J, Yang W (2020) Investigating the influences of indentation hardness and brittleness of rock-like material on its mechanical crushing behaviors. Math Probl Eng 2020:1–16

    Google Scholar 

  170. Zhou J, Mandal S, Chen F, Quest M, Hume D (2018). Reservoir geomechanic heterogeneity index (RGHI): Concept, methodology, and application. SPE/AAPG/SEG Unconv Resourc Technol Conf, OnePetro

  171. Zoeram AS, Mousavi SA (2014) Laser welding of Ti–6Al–4V to nitinol. Mater Des 61:185–190

    Article  Google Scholar 

  172. Sines G, Carlson R (1952) Hardness measurements for determination of residual stresses. ASTM Bull 180:35–37

    Google Scholar 

  173. Tsui T, Oliver W, Pharr G (1996) Influences of stress on the measurement of mechanical properties using nanoindentation: part I, Experimental studies in an aluminum alloy. J Mater Res 11(3):752–759

    Article  Google Scholar 

  174. Bolshakov A, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation: part II. Finite element simulations. J Mater Res 11(3):760–768

    Article  Google Scholar 

  175. Khan M, Fitzpatrick M, Hainsworth S, Edwards L (2011) Effect of residual stress on the nanoindentation response of aerospace aluminium alloys. Comput Mater Sci 50(10):2967–2976

    Article  Google Scholar 

  176. Huber N, Heerens J (2008) On the effect of a general residual stress state on indentation and hardness testing. Acta Mater 56(20):6205–6213

    Article  Google Scholar 

  177. Sabokrouh M, Farahani M (2019) Correlation between the weld residual stresses and its tensile and impact strength. J Appl Comput Mech 5(4):727–734

    Google Scholar 

  178. Farahani M, Sattari-Far I, Akbari D, Alderliesten R (2012) Numerical and experimental investigations of effects of residual stresses on crack behavior in Aluminum 6082–T6. Proc Inst Mech Eng C J Mech Eng Sci 226(9):2178–2191

    Article  Google Scholar 

  179. Farahani M, Sattari-Far I (2011) Effects of residual stresses on crack-tip constraints. Scientia Iranica 18(6):1267–1276

    Article  Google Scholar 

  180. Francis J, Bhadeshia H, Withers P (2007) Welding residual stresses in ferritic power plant steels. Mater Sci Technol 23(9):1009–1020

    Article  Google Scholar 

  181. Zargar SH, Farahani M, Givi MKB (2016) Numerical and experimental investigation on the effects of submerged arc welding sequence on the residual distortion of the fillet welded plates. Proc Ins Mech Eng, Part B: J Eng Manuf 230(4):654–661

    Article  Google Scholar 

  182. Ueda Y, Yamakawa T (1971). Analysis of thermal elastic-plastic stress and strain during welding by finite element method. Japan Welding Society Transactions 2(2)

  183. Hibbitt HD, Marcal PV (1973) A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure. Comput Struct 3(5):1145–1174

    Article  Google Scholar 

  184. Zhang Y, Su W, Dong H, Li T, Cao H (2022). Effect of welding sequence and constraint on the residual stress and deformation of thick welded butt joint made of Q345qD steel. Adv Civil Eng 2022

  185. Prevey PS (1986) X-ray diffraction residual stress techniques. ASM Int, ASM Handbook 10:380–392

    Google Scholar 

  186. Deng D (2009) FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des 30(2):359–366

    Article  Google Scholar 

  187. Rong Y, Huang Y, Xu J, Zheng H, Zhang G (2017) Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding. J Mater Process Technol 245:270–277

    Article  Google Scholar 

  188. Vemanaboina H, Babu MM, Prerana IC, Gundabattini E, Yelamasetti B, Saxena KK, Salem KH, Khan MI, Eldin SM, Agrawal MK (2023). Evaluation of residual stresses in CO2 laser beam welding of SS316L weldments using FEA. Mater Res Exp

  189. Moglia F, Raspa A (2020) New Trends in Laser Beam Welding: How automotive applications are driving the future of laser technologies. Photonics Views 17(5):26–29

    Article  Google Scholar 

  190. Mo T, Li Y, Lau K-T, Poon CK, Wu Y, Luo Y (2022) Trends and emerging technologies for the development of electric vehicles. Energies 15(17):6271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Seyedeh Fatemeh Nabavi, Anooshiravan Farshidianfar, and Hamid Dalir. The first draft of the manuscript was written by all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Seyedeh Fatemeh Nabavi or Hamid Dalir.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Declaration of generative AI and AI-assisted technologies in the writing process.

During the preparation of this work, the authors used ChatGPT in order to improve language and readability, with caution. After using this service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, S.F., Farshidianfar, A. & Dalir, H. A comprehensive review on recent laser beam welding process: geometrical, metallurgical, and mechanical characteristic modeling. Int J Adv Manuf Technol 129, 4781–4828 (2023). https://doi.org/10.1007/s00170-023-12536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12536-1

Keywords

Navigation