Skip to main content
Log in

Preparation of additive manufacturing powder by external field–enabled: a comparative assessment

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As an important raw material for additive manufacturing (AM), the performance of powder is one of the key factors affecting the final product. Although, existing preparation methods have been maturely applied to AM powder. However, conventional methods cannot meet the urgent needs of AM for high-performance powder. Especially in terms of powder sphericity, particle size distribution, and purity, it is difficult to obtain powder with balanced performance by conventional methods. In view of this, external field–enabled atomization is an effective alternative method. In recent years, a large number of studies have explored the application of external field–enabled atomization in powder preparation. These studies demonstrate the great potential of external field–enabled atomization technology represented by electrospray and ultrasonic atomization for the preparation of high-performance AM powder. However, there is still a lack of systematic discussion to establish the relationship between external field–enabled atomization and AM powder. Therefore, this paper makes a comprehensive and systematic review of the research progress in the field of powder preparation by external field–enabled atomization. Firstly, the influence of powder properties on parts is analyzed from the perspective of AM. Some conventional methods of powder preparation are introduced, and their shortcomings are pointed out. Secondly, the mechanism, equipment, and process parameters of external field–enabled atomization are comprehensively summarized. It is proved that external field–enabled atomization is applicable to the preparation of high-performance powder. Finally, the main challenges of external field–enabled atomization in the field of powder preparation are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AM :

Additive manufacturing

EIGA :

Electrode induction melting gas atomization

EBM :

Electron beam melting

E MQL :

Electrostatic minimum quantity lubrication

GMR :

Gas-to-melt mass flow rates ratio

MMA :

Methyl methacrylate

M QL :

Minimum quantity lubrication

PBF :

Powder bed fusion

PREP :

Plasma rotating electrode atomization

PA :

Plasma atomization

PLA :

Polylactic acid

PS :

Polystyrene

PA :

Polyamide

PP :

Polypropylene

PMMA :

Polymethyl methacrylate

SLM :

Selective laser melting

SLS :

Selective laser sintering

USWA :

Ultrasonic standing wave atomization

VIGA :

Vacuum induction melting gas atomization

VAE :

Vinyl acetate-ethylene copolymer emulsion

A e :

Amplitude threshold

d 50 :

Mean particle size

D l :

Diameter of melt stream flow

D e :

Electrode diameter

d p :

Droplet diameter

f :

Excitation frequency

G :

Flow rates of gas

K :

Electrical conductivity of the atomized liquid

K 1 :

A comprehensive parameter related to state of the melt stream and nozzle

K 2 :

A comprehensive parameter related to physical properties and process parameters of the alloy

L r :

Splitting limit of droplets

M :

Flow rates of molten metal

n :

Electrode rotation speed

P s :

Static pressure of liquid

P c :

Electrostatic expansion force

Q 0 :

The minimum flow value required to stabilize the cone jet mode

q R :

Maximum charge carried by the droplet

r :

Droplet radius

W :

Weber number

ε :

Dielectric constant of the liquid

σ :

Surface tension of liquids

\({\gamma }_{l}\) :

Surface tension of the liquid

\({\gamma }_{m}\) :

Surface tension of molten metal

ρ l :

Density of the liquid

ρ :

The density of melt droplets

λ :

Wavelength

η :

Viscosity of the liquid

η g :

Kinematic viscosities of gas

η m :

Kinematic viscosities of molten metal

References

  1. Kumar MB, Sathiya P (2021) Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin Wall Struct 159:107228. https://doi.org/10.1016/j.tws.2020.107228

    Article  Google Scholar 

  2. Calignano F, Manfredi D, Ambrosio EP et al (2017) Overview on additive manufacturing technologies. P IEEE 105(4):593–612. https://doi.org/10.1109/JPROC.2016.2625098

    Article  CAS  Google Scholar 

  3. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  4. Beaman JJ, Bourell DL, Seepersad CC et al (2020) Additive manufacturing review: early past to current practice. J Manuf Sci Eng 142(11):110812. https://doi.org/10.1115/1.4048193

  5. Bourell D, Kruth JP, Leu M et al (2017) Materials for additive manufacturing. CIRP Ann 66(2):659–681. https://doi.org/10.1016/j.cirp.2017.05.009

    Article  Google Scholar 

  6. Long J, Nand A, Ray S (2021) Application of spectroscopy in additive manufacturing. Materials 14(1):203. https://doi.org/10.3390/ma14010203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yuan S, Shen F, Chua CK et al (2019) Polymeric composites for powder-based additive manufacturing: materials and applications. Prog Polym Sci 91:141–168. https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  8. Campagnoli MR, Galati M, Saboori A (2021) On the processability of copper components via powder-based additive manufacturing processes: potentials, challenges and feasible solutions. J Manuf Process 72:320–337. https://doi.org/10.1016/j.jmapro.2021.10.038

    Article  Google Scholar 

  9. Shirazi SFS, Gharehkhani S, Mehrali M et al (2015) A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mat 16:033502. https://doi.org/10.1088/1468-6996/16/3/033502

    Article  CAS  Google Scholar 

  10. Taheri H, Shoaib MRBM, Koester LW et al (2017) Powder-based additive manufacturing-a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int J Addit Subtra Mater Manuf 1(2):172–209. https://doi.org/10.1504/IJASMM.2017.088204

    Article  Google Scholar 

  11. Singh DD, Mahender T, Reddy AR (2021) Powder bed fusion process: a brief review. Mater Today: Proc 46:350–355. https://doi.org/10.1016/j.matpr.2020.08.415

    Article  CAS  Google Scholar 

  12. Wei C, Li L (2021) Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototy 16(3):347–371. https://doi.org/10.1080/17452759.2021.1928520

    Article  Google Scholar 

  13. Wang JC, Dommati H, Hsieh SJ (2019) Review of additive manufacturing methods for high-performance ceramic materials. Int J Adv Manuf Tech 103:2627–2647. https://doi.org/10.1007/s00170-019-03669-3

    Article  Google Scholar 

  14. Dong Y, Li Y, Ebel T et al (2020) Cost-affordable, high-performance Ti–TiB composite for selective laser melting additive manufacturing. J Mater Res 35(15):1922–1935. https://doi.org/10.1557/jmr.2019.389

    Article  CAS  Google Scholar 

  15. Chen C, Huang B, Liu Z et al (2023) Additive manufacturing of WC-Co cemented carbides: process, microstructure, and mechanical properties. Addit Manuf 63:103410. https://doi.org/10.1016/j.addma.2023.103410

    Article  CAS  Google Scholar 

  16. Shaheen MY, Thornton AR, Luding S et al (2021) The influence of material and process parameters on powder spreading in additive manufacturing. Powder Technol 383:564–583. https://doi.org/10.1016/j.powtec.2021.01.058

    Article  CAS  Google Scholar 

  17. Wang L, Zhou Z, Li E et al (2022) Powder deposition mechanism during powder spreading with different spreader geometries in powder bed fusion additive manufacturing. Powder Technol 395:802–810. https://doi.org/10.1016/j.powtec.2021.10.017

    Article  CAS  Google Scholar 

  18. Miao G, Du W, Pei Z et al (2022) A literature review on powder spreading in additive manufacturing. Addit Manuf 58:103029. https://doi.org/10.1016/j.addma.2022.103029

    Article  CAS  Google Scholar 

  19. Meier B, Warchomicka F, Petrusa J et al (2022) Influence of powder production process and properties on material properties of Ti6Al4V manufactured by L-PBF. Int J Adv Manuf Tech 123(5–6):1577–1588. https://doi.org/10.1007/s00170-022-10250-y

    Article  Google Scholar 

  20. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  21. Xie X, Ma Y, Chen C et al (2020) Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder. J Alloy Compd 819:152962. https://doi.org/10.1016/j.jallcom.2019.152962

    Article  CAS  Google Scholar 

  22. Hu AB, Cai SZ (2022) Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity. J Mater Sci Technol 114:62–72. https://doi.org/10.1016/j.jmst.2021.10.004

    Article  CAS  Google Scholar 

  23. Zhang Z, Zhou G, Tian C et al (2022) Vacuum-induced multistage atomization for preparation of TC11 alloy 3D printing powder. J Mater Res Technol 20:157–160. https://doi.org/10.1016/j.jmrt.2022.07.044

    Article  CAS  Google Scholar 

  24. Touzé S, Rauch M, Hascoët JY (2020) Flowability characterization and enhancement of aluminium powders for additive manufacturing. Addit Manuf 36:101462. https://doi.org/10.1016/j.addma.2020.101462

    Article  CAS  Google Scholar 

  25. Zheng MY, Zhang SM, Hu Q et al (2019) A novel crucible-less inert gas atomisation method of producing titanium powder for additive manufacturing. Powder Metall 62(1):15–21. https://doi.org/10.1080/00325899.2018.1540525

    Article  CAS  Google Scholar 

  26. Fedina T, Sundqvist J, Powell J et al (2020) A comparative study of water and gas atomized low alloy steel powders for additive manufacturing. Addit Manuf 36:101675. https://doi.org/10.1016/j.addma.2020.101675

    Article  CAS  Google Scholar 

  27. Xu WH, Li CH, Zhang YB, Yang M, Zhou ZM, Chen Y, Liu B, Zhang NQ, Xu XF (2023) Research progress and application of electrostatic atomization minimum quantity lubrication. Chin J Mech Eng-En 59(07):110–138. https://doi.org/10.3901/JME.2023.07.110

    Article  Google Scholar 

  28. Wu XF, Xu WH, Ma H, Zhou ZM, Liu B, Cui X, Li CH (2023) Mechanism of electrostatic atomization and surface quality evaluation of 7075 aluminum alloy under electrostatic minimum quantity lubrication milling. Surf Tech 52(6):337–350. https://doi.org/10.16490/j.cnki.issn.1001-3660.2023.06.030

    Article  Google Scholar 

  29. Gao T, Li CH, Zhang YB, Yang M, Cao HJ, Wang DZ, Liu X, Zhou ZM, Liu B. Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant. Chin J Mech Eng-En 59 (13):325–342. http://kns.cnki.net/kcms/detail/11.2187.TH.20220927.0939.004.html

  30. Zhang YB, Li WY, Tang LZ, Li CH, Liang Xl XuSQ et al (2023) Abrasive water jet tool passivation: from mechanism to application. Int J Adv Manuf Sci Technol 3(1):2022018. https://doi.org/10.51393/j.jamst.2022018

    Article  Google Scholar 

  31. Cui X, Li C, Yang M et al (2023) Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4 V. Tribol Int 186:108603. https://doi.org/10.1016/j.triboint.2023.108603

    Article  CAS  Google Scholar 

  32. Zhang F, Zhang YB, Cheung CF et al (2023) A low temperature nano-lubrication method for enhancing machinability in ultra-precision grinding of binderless tungsten carbide (WC). Cirp Ann-Manuf Techn 72(1):273–276. https://doi.org/10.1016/j.cirp.2023.04.075

    Article  Google Scholar 

  33. Jia DZ, Li CH, Zhang YB et al (2017) Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids. Precis Eng 50:248–262. https://doi.org/10.1016/j.precisioneng.2017.05.012

    Article  Google Scholar 

  34. Jia DZ, Li CH, Zhang YB, Yang M, Cao HJ, Liu B, Zhou ZM (2022) Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. Chin J Mech Eng-En 58(5):198–211. https://doi.org/10.3901/JME.2022.05.198

    Article  Google Scholar 

  35. Zhang ZC, Sui MH, Li CH et al (2022) Residual stress of grinding cemented carbide using MoS2 nano-lubricant. Int J Adv Manuf Technol 119:5671–5685. https://doi.org/10.1007/s00170-022-08660-z

    Article  Google Scholar 

  36. Jia DZ, Li CH, Liu JH, Zhang YB, Yang M, Gao T, Said Z, Sharma S (2023) Prediction model of volume average diameter and analysis of atomization characteristics in electrostatic atomization minimum quantity lubrication. Friction 11:2107–2131. https://doi.org/10.1007/s40544-022-0734-2

    Article  Google Scholar 

  37. Wang XM, Li CH, Zhang YB et al (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process 59:76–97. https://doi.org/10.1016/j.jmapro.2020.09.044

    Article  Google Scholar 

  38. Spath S, Seitz H (2014) Influence of grain size and grain-size distribution on workability of granules with 3D printing. Int J Adv Manuf Technol 70:135–144. https://doi.org/10.1007/s00170-013-5210-8

    Article  Google Scholar 

  39. Strondl A, Lyckfeldt O, Brodin H et al (2015) Characterization and control of powder properties for additive manufacturing. Jom 67:549–554. https://doi.org/10.1007/s11837-015-1304-0

    Article  CAS  Google Scholar 

  40. Zhao Y, Chew JW (2021) Effect of lognormal particle size distributions on particle spreading in additive manufacturing. Adv Powder Technol 32(4):1127–1144. https://doi.org/10.1016/j.apt.2021.02.019

    Article  Google Scholar 

  41. He Y, Hassanpour A, Bayly AE (2021) Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing. Powder Technol 392:191–203. https://doi.org/10.1016/j.powtec.2021.06.046

    Article  CAS  Google Scholar 

  42. Averardi A, Cola C, Zeltmann SE et al (2020) Effect of particle size distribution on the packing of powder beds: a critical discussion relevant to additive manufacturing. Mater Today Commun 24:100964. https://doi.org/10.1016/j.mtcomm.2020.100964

    Article  CAS  Google Scholar 

  43. Tan JH, Wong WLE, Dalgarno KW (2017) An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf 18:228–255. https://doi.org/10.1016/j.addma.2017.10.011

    Article  Google Scholar 

  44. Parteli EJR, Pöschel T (2016) Particle-based simulation of powder application in additive manufacturing. Powder Technol 288:96–102. https://doi.org/10.1016/j.powtec.2015.10.035

    Article  CAS  Google Scholar 

  45. Groarke R, Danilenkoff C, Karam S et al (2020) 316L stainless steel powders for additive manufacturing: relationships of powder rheology, size, size distribution to part properties. Materials 13(23):5537. https://doi.org/10.3390/ma13235537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaleem MA, Alam MZ, Khan M et al (2021) An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes. Met Powder Rep 76:S50–S54. https://doi.org/10.1016/j.mprp.2020.06.061

    Article  Google Scholar 

  47. Sofia D, Chirone R, Lettieri P et al (2018) Selective laser sintering of ceramic powders with bimodal particle size distribution. Chem Eng Res Des 136:536–547. https://doi.org/10.1016/j.cherd.2018.06.008

    Article  CAS  Google Scholar 

  48. Farzadfar SA, Murtagh MJ, Venugopal N (2020) Impact of IN718 bimodal powder size distribution on the performance and productivity of laser powder bed fusion additive manufacturing process. Powder Technol 375:60–80. https://doi.org/10.1016/j.powtec.2020.07.092

    Article  CAS  Google Scholar 

  49. Krinitcyn M, Toropkov N, Pervikov A et al (2021) Characterization of nano/micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technol 394:225–233. https://doi.org/10.1016/j.powtec.2021.08.061

    Article  CAS  Google Scholar 

  50. Zhu HH, Fuh JYH, Lu L (2007) The influence of powder apparent density on the density in direct laser-sintered metallic parts. Int J Mach Tool Manu 47(2):294–298. https://doi.org/10.1016/j.ijmachtools.2006.03.019

    Article  Google Scholar 

  51. Nguyen QB, Luu DN, Nai SML et al (2018) The role of powder layer thickness on the quality of SLM printed parts. Arch Civ Mech Eng 18:948–955. https://doi.org/10.1016/j.acme.2018.01.015

    Article  Google Scholar 

  52. Dawes J, Bowerman R, Trepleton R (2015) Introduction to the additive manufacturing powder metallurgy supply chain exploring the production and supply of metal powders for AM processes. Johnson Matthey Tech 59(3):243–256. https://doi.org/10.1595/205651315X688686

    Article  Google Scholar 

  53. Bertrand P, Bayle F, Combe C et al (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254(4):989–992. https://doi.org/10.1016/j.apsusc.2007.08.085

    Article  CAS  Google Scholar 

  54. Fan Z, Lu M, Huang H (2018) Selective laser melting of alumina: a single track study. Ceram Int 44(8):9484–9493. https://doi.org/10.1016/j.ceramint.2018.02.166

    Article  CAS  Google Scholar 

  55. Chatham CA, Long TE, Williams CB (2019) A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog Polym Sci 93:68–95. https://doi.org/10.1016/j.progpolymsci.2019.03.003

    Article  CAS  Google Scholar 

  56. Verbelen L, Dadbakhsh S, Van den Eynde M et al (2016) Characterization of polyamide powders for determination of laser sintering processability. Eur Polym J 75:163–174. https://doi.org/10.1016/j.eurpolymj.2015.12.014

    Article  CAS  Google Scholar 

  57. Wischeropp TM, Emmelmann C, Brandt M et al (2019) Measurement of actual powder layer height and packing density in a single layer in selective laser melting. Addit Manuf 28:176–183. https://doi.org/10.1016/j.addma.2019.04.019

    Article  CAS  Google Scholar 

  58. Gong G, Ye J, Chi Y et al (2021) Research status of laser additive manufacturing for metal: a review. J Mater Res Technol 15:855–884. https://doi.org/10.1016/j.jmrt.2021.08.050

    Article  CAS  Google Scholar 

  59. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  60. Muñiz-Lerma JA, Nommeots-Nomm A et al (2018) A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: a case study on AlSi7Mg. Materials 11(12):2386. https://doi.org/10.3390/ma11122386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clayton J, Millington-Smith D, Armstrong B (2015) The application of powder rheology in additive manufacturing. Jom 67(3):544–548. https://doi.org/10.1007/s11837-015-1293-z

    Article  CAS  Google Scholar 

  62. Delroisse P, Jacques PJ, Maire E et al (2017) Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting. Scr Mater 141:32–35. https://doi.org/10.1016/j.scriptamat.2017.07.020

    Article  CAS  Google Scholar 

  63. Leung CLA, Marussi S, Towrie M et al (2019) The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater 166:294–305. https://doi.org/10.1016/j.actamat.2018.12.027

    Article  CAS  Google Scholar 

  64. Wei M, Chen S, Sun M et al (2020) Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol 367:724–739. https://doi.org/10.1016/j.powtec.2020.04.030

    Article  CAS  Google Scholar 

  65. Yang CC, Chau JLH, Weng CJ et al (2017) Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys 202:151–158. https://doi.org/10.1016/j.matchemphys.2017.09.014

    Article  CAS  Google Scholar 

  66. Beckers D, Ellendt N, Fritsching U et al (2020) Impact of process flow conditions on particle morphology in metal powder production via gas atomization. Adv Powder Technol 31(1):300–311. https://doi.org/10.1016/j.apt.2019.10.022

    Article  CAS  Google Scholar 

  67. Zhu L, Zou M, Zhang X et al (2021) Enhanced hydrogen generation performance of al-rich alloys by a melting-mechanical crushing-ball milling method. Materials 14(24):7889. https://doi.org/10.3390/ma14247889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tong Y, Qi P, Liang X et al (2018) Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials 11(7):1250. https://doi.org/10.3390/ma11071250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yue Z, Zhou J, Li L et al (2000) Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J Magn Magn Mater 208(1–2):55–60. https://doi.org/10.1016/S0304-8853(99)00566-1

    Article  CAS  Google Scholar 

  70. Abid N, Khan AM, Shujait S et al (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci 300:102597. https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  PubMed  Google Scholar 

  71. Kim JH, Babushok VI, Germer TA et al (2003) Cosolvent-assisted spray pyrolysis for the generation of metal particles. Int J Mater Res 18(7):1614–1622. https://doi.org/10.1557/JMR.2003.0222

    Article  CAS  Google Scholar 

  72. Li X, Zhu Q, Shu S et al (2019) Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder Technol 356:759–768. https://doi.org/10.1016/j.powtec.2019.09.023

    Article  CAS  Google Scholar 

  73. Vijayan S, Bedard BA, Gleason MA et al (2019) Studies of thermally activated processes in gas-atomized Al alloy powders: in situ STEM heating experiments on FIB-cut cross sections. J Mater Sci 54(13):9921–9932. https://doi.org/10.1007/s10853-019-03562-0

    Article  CAS  Google Scholar 

  74. Cui C, Uhlenwinkel V, Schulz A et al (2019) Austenitic stainless steel powders with increased nitrogen content for laser additive manufacturing. Metals-Basel 10(1):61. https://doi.org/10.3390/met10010061

    Article  CAS  Google Scholar 

  75. Lehtonen J, Ge Y, Ciftci N et al (2020) Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder. J Alloys Compd 827:154142. https://doi.org/10.1016/j.jallcom.2020.154142

    Article  CAS  Google Scholar 

  76. Liu B, Wang J, Liu Y et al (2016) Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics 75:25–30. https://doi.org/10.1016/j.intermet.2016.05.006

    Article  CAS  Google Scholar 

  77. Vaidya M, Muralikrishna GM, Murty BS (2019) High-entropy alloys by mechanical alloying: a review. J Mater Res 34(5):664–686. https://doi.org/10.1557/jmr.2019.37

    Article  CAS  Google Scholar 

  78. Allimant A, Planche MP, Bailly Y et al (2009) Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol 190(1–2):79–83. https://doi.org/10.1016/j.powtec.2008.04.071

    Article  CAS  Google Scholar 

  79. Amatriain A, Urionabarrenetxea E, Avello A et al (2022) Multiphase model to predict particle size distributions in close-coupled gas atomization. Int J Multiphase Flow 154:104138. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104138

    Article  MathSciNet  CAS  Google Scholar 

  80. Lubanska H (1970) Correlation of spray ring data for gas atomization of liquid metals. Jom 22(2):45–49. https://doi.org/10.1007/BF03355938

    Article  CAS  Google Scholar 

  81. Sun P, Fang ZZ, Zhang Y et al (2017) Review of the methods for production of spherical Ti and Ti alloy powder. Jom 69:1853–1860. https://doi.org/10.1007/s11837-017-2513-5

    Article  CAS  Google Scholar 

  82. Jahns K, Bappert R, Böhlke P et al (2020) Additive manufacturing of CuCr1Zr by development of a gas atomization and laser powder bed fusion routine. Int J Adv Manuf Technol 107:2151–2161. https://doi.org/10.1007/s00170-020-04941-7

    Article  Google Scholar 

  83. Ruan G, Liu C, Qu H et al (2020) A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process. Mat Sci Eng A-Struct 850:143589. https://doi.org/10.1016/j.msea.2022.143589

    Article  CAS  Google Scholar 

  84. Lagutkin S, Achelis L, Sheikhaliev S et al (2004) Atomization process for metal powder. Mat Sci Eng A-Struct 383(1):1–6. https://doi.org/10.1016/j.msea.2004.02.059

    Article  CAS  Google Scholar 

  85. Shi C, Chen S, Xia Q et al (2018) Preparation and printability of 24CrNiMo alloy steel powder for selective laser melting fabricating brake disc. Powder Metall 61(1):73–80. https://doi.org/10.1080/00325899.2017.1396019

    Article  CAS  Google Scholar 

  86. Kennedy SK, Dalley AM, Kotyk GJ (2019) Additive manufacturing: assessing metal powder quality through characterizing feedstock and contaminants. J Mater Eng Perform 28:728–740. https://doi.org/10.1007/s11665-018-3841-5

    Article  CAS  Google Scholar 

  87. Tammas-Williams S, Withers PJ, Todd I et al (2016) Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr Mater 122:72–76. https://doi.org/10.1016/j.scriptamat.2016.05.002

    Article  CAS  Google Scholar 

  88. Zhao X, Chen J, Lin X et al (2008) Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mat Sci Eng A-Struct 478(1–2):119–124. https://doi.org/10.1016/j.msea.2007.05.079

    Article  CAS  Google Scholar 

  89. Nie Y, Tang J, Yang B et al (2020) Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process. Adv Powder Technol 31(5):2152–2160. https://doi.org/10.1016/j.apt.2020.03.006

    Article  CAS  Google Scholar 

  90. Tang J, Nie Y, Lei Q et al (2019) Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process. Adv Powder Technol 30(10):2330–2337. https://doi.org/10.1016/j.apt.2019.07.015

    Article  CAS  Google Scholar 

  91. Xiong L, Chuang AC, Thomas J et al (2022) Defect and satellite characteristics of additive manufacturing metal powders. Adv Powder Technol 33(3):103486. https://doi.org/10.1016/j.apt.2022.103486

    Article  CAS  Google Scholar 

  92. Guo RP, Xu L, Zong BYP et al (2017) Characterization of prealloyed Ti–6Al–4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall Sin-Engl 30:735–744. https://doi.org/10.1007/s40195-017-0540-4

    Article  CAS  Google Scholar 

  93. Zhao Y, Cui Y, Hasebe Y et al (2021) Controlling factors determining flowability of powders for additive manufacturing: a combined experimental and simulation study. Powder Technol 393:482–493. https://doi.org/10.1016/j.powtec.2021.08.006

    Article  CAS  Google Scholar 

  94. Chen Y, Zhang JY, Wang B, Yao CG (2018) Comparative study of IN600 superalloy produced by two powder metallurgy technologies: argon atomizing and plasma rotating electrode process. Vacuum 156:302–309. https://doi.org/10.1016/j.vacuum.2018.07.050

    Article  CAS  Google Scholar 

  95. Chen G, Zhao SY, Tan P et al (2018) A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Adv Powder Technol 333:38–46. https://doi.org/10.1016/j.powtec.2018.04.013

    Article  CAS  Google Scholar 

  96. Moghimian P, Poirié T, Habibnejad-Korayem M et al (2021) Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit Manuf 43:102017. https://doi.org/10.1016/j.addma.2021.102017

    Article  CAS  Google Scholar 

  97. Fang ZZ, Paramore JD, Sun P et al (2018) Powder metallurgy of titanium–past, present, and future. Int Mater Rev 63(7):407–459. https://doi.org/10.1080/09506608.2017.1366003

    Article  CAS  Google Scholar 

  98. Ahsan MN, Pinkerton AJ, Moat RJ et al (2011) A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Mat Sci Eng A-Struct 528(25–26):7648–7657. https://doi.org/10.1016/j.msea.2011.06.074

    Article  CAS  Google Scholar 

  99. Jang TS, Kim DE, Han G et al (2020) Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Open Biomed EngLett 10:505–516. https://doi.org/10.1007/s13534-020-00177-2

    Article  Google Scholar 

  100. Jung CH, Park JY, Kim WJ et al (2006) Characterizations of Li2TiO3 prepared by a solution combustion synthesis and fabrication of spherical particles by dry-rolling granulation process. Fusion Eng Des 81(8–14):1039–1044. https://doi.org/10.1016/j.fusengdes.2005.08.085

    Article  CAS  Google Scholar 

  101. Lin CS, Lin ST (2007) Effects of granule size and distribution on the cold isostatic pressed alumina. J Mater Process Technol 201(1–3):657–661. https://doi.org/10.1016/j.jmatprotec.2007.11.159

    Article  CAS  Google Scholar 

  102. Popov VV, Grilli ML, Koptyug A et al (2021) Powder bed fusion additive manufacturing using critical raw materials: a review. Materials 14(4):909. https://doi.org/10.3390/ma14040909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sing SL, Yeong WY, Wiria FE et al (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping J 23(3):611–623. https://doi.org/10.1108/RPJ-11-2015-0178

    Article  Google Scholar 

  104. Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L (2017) Controlling the morphology of ceramic and composite powders obtained via spray drying–a review. Ceram Int 43(15):11543–11551. https://doi.org/10.1016/j.ceramint.2017.05.023

    Article  CAS  Google Scholar 

  105. Lukasiewicz SJ (1989) Spray-drying ceramic powders. J Am Ceram Soc 72(4):617–624. https://doi.org/10.1111/j.1151-2916.1989.tb06184.x

    Article  CAS  Google Scholar 

  106. Shoulders WT, Bizarri G, Bourret E et al (2016) Influence of process parameters on the morphology of spray–dried BaCl2 powders. J Am Ceram Soc 99(1):20–26. https://doi.org/10.1111/jace.13869

    Article  CAS  Google Scholar 

  107. Ben Y, Zhang L, Wei S et al (2017) PVB modified spherical granules of β-TCP by spray drying for 3D ceramic printing. J Alloys Compd 721:312–319. https://doi.org/10.1016/j.jallcom.2017.06.022

    Article  CAS  Google Scholar 

  108. Bertrand G, Filiatre C, Mahdjoub H et al (2003) Influence of slurry characteristics on the morphology of spray-dried alumina powders. J Eur Ceram Soc 23(2):263–271. https://doi.org/10.1016/S0955-2219(02)00171-1

    Article  CAS  Google Scholar 

  109. Carrasco-Munoz A, Barbero-Colmenar E, Bodnár E et al (2022) Monodisperse droplets and particles by efficient neutralization of electrosprays. J Aerosol Sci 160:105909. https://doi.org/10.1016/j.jaerosci.2021.105909

    Article  CAS  Google Scholar 

  110. Suwanprateeb J, Sanngam R, Panyathanmaporn T (2010) Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mat Sci Eng C-Mater 30(4):610–617. https://doi.org/10.1016/j.msec.2010.02.014

    Article  CAS  Google Scholar 

  111. Navarrete-Segado P, Frances C, Grossin D et al (2022) Tailoring hydroxyapatite microspheres by spray-drying for powder bed fusion feedstock. Powder Technol 398:117116. https://doi.org/10.1016/j.powtec.2022.117116

    Article  CAS  Google Scholar 

  112. Cottrino S, Jorand Y, Adrien J et al (2013) Spray-drying of highly concentrated nano alumina dispersions. Powder Technol 237:586–593. https://doi.org/10.1016/j.powtec.2012.12.058

    Article  CAS  Google Scholar 

  113. González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J (2019) Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci 94:57–116. https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  CAS  Google Scholar 

  114. Ligon SC, Liska R, Stampfl J et al (2017) Polymers for 3D printing and customized additive manufacturing. Russ Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  CAS  Google Scholar 

  115. Liang SB, Hu DP, Zhu C et al (2002) Production of fine polymer powder under cryogenic conditions. Chem Eng Technol 25(4):401–405. https://doi.org/10.1002/1521-4125(200204)25

    Article  CAS  Google Scholar 

  116. Gu DD, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  CAS  Google Scholar 

  117. Yu C, Ma J, Wang W (2010) Preparation of redispersible emulsion powder by spray drying. Int J Food Engg 6:12. https://doi.org/10.2202/1556-3758.1840

    Article  CAS  Google Scholar 

  118. Gouaou I, Shamaei S, Koutchoukali MS et al (2019) Impact of operating conditions on a single droplet and spray drying of hydroxypropylated pea starch: process performance and final powder properties. Asia-Pac J Chem Eng 14(1):e2268. https://doi.org/10.1002/apj.2268

    Article  CAS  Google Scholar 

  119. Walzel P (2011) Influence of the spray method on product quality and morphology in spray drying. Chem Eng Technol 34(7):1039–1048. https://doi.org/10.1002/ceat.201100051

    Article  CAS  Google Scholar 

  120. Jaworek A (2007) Micro-and nanoparticle production by electrospraying. Powder Technol 176(1):18–35. https://doi.org/10.1016/j.powtec.2007.01.035

    Article  CAS  Google Scholar 

  121. Yurteri CU, Hartman RPA, Marijnissen JCM (2010) Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles-a review. Kona Powder Part J 28:91–115. https://doi.org/10.14356/kona.2010010

    Article  CAS  Google Scholar 

  122. Morais AÍS, Vieira EG, Afewerki S et al (2020) Fabrication of polymeric microparticles by electrospray: the impact of experimental parameters. J Funct Biomater 11(1):4. https://doi.org/10.3390/jfb11010004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smeets A, Clasen C, Van den Mooter G (2017) Electrospraying of polymer solutions: study of formulation and process parameters. Eur J Pharm Biopharm 119:114–124. https://doi.org/10.1016/j.ejpb.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  124. Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30(7):873–893. https://doi.org/10.1016/S0021-8502(98)00787-3

    Article  CAS  Google Scholar 

  125. Xu WH, Li CH, Zhang YB et al (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extrem Manuf 4:042003. https://doi.org/10.1088/2631-7990/ac9652

    Article  Google Scholar 

  126. Jia DZ, Zhang NQ, Liu B, Zhou ZM, Wang XP, Zhang YB, Mao C, Li CH (2021) Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond Abrasives Eng 41(3):8995. https://doi.org/10.13394/j.cnki.jgszz.2021.3.0013

    Article  CAS  Google Scholar 

  127. Balachandran W, Miao P, Xiao P (2001) Electrospray of fine droplets of ceramic suspensions for thin-film preparation. J Electrostat 50(4):249–263. https://doi.org/10.1016/S0304-3886(00)00039-5

    Article  CAS  Google Scholar 

  128. Kim JY, Lee SJ, Hong JG (2022) Spray mode and monodisperse droplet properties of an electrospray. ACS Omega 7(32):28667–28674. https://doi.org/10.1021/acsomega.2c04002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37(11):1510–1551. https://doi.org/10.1016/j.progpolymsci.2012.03.002

    Article  CAS  Google Scholar 

  130. Uchizono NM, Collins AL, Thuppul A et al (2020) Emission modes in electrospray thrusters operating with high conductivity ionic liquids. Aerospace 7(10):141. https://doi.org/10.3390/aerospace7100141

    Article  Google Scholar 

  131. Manna L, Carotenuto C, Nigro R et al (2017) Primary atomization of electrified water sprays. Can J Chem Eng 95(9):1781–1788. https://doi.org/10.1002/cjce.22841

    Article  CAS  Google Scholar 

  132. Gao DJ, Yao DG, Leist SK et al (2019) Mechanisms and modeling of electrohydrodynamic phenomena. Int J Bioprinting 5(1):166. https://doi.org/10.18063/ijb.v5i1.166

    Article  CAS  Google Scholar 

  133. Kong Q, Yang S, Wang Q et al (2022) Dynamics of electrified jets in electrohydrodynamic atomization. Case Stud Therm Eng 29:101725. https://doi.org/10.1016/j.csite.2021.101725

    Article  Google Scholar 

  134. Balachandran W, Machowski W, Ahmad CN (1994) Electrostatic atomization of conducting liquids using AC superimposed on DC fields. IEEE Trans Ind Appl 30(4):850–855. https://doi.org/10.1109/28.297899

    Article  Google Scholar 

  135. Verdoold S, Agostinho LLF, Yurteri CU et al (2014) A generic electrospray classification. J Aerosol Sci 67:87–103. https://doi.org/10.1016/j.jaerosci.2013.09.008

    Article  CAS  Google Scholar 

  136. Oh JW, Park J, Nahm S et al (2021) SiC-Si composite part fabrication via SiC powder binder jetting additive manufacturing and molten-Si infiltration. Int J Refract Met Hard 101:105686. https://doi.org/10.1016/j.ijrmhm.2021.105686

    Article  CAS  Google Scholar 

  137. Yang S, Wang Z, Kong Q et al (2022) Varicose-whipping instabilities transition of an electrified micro-jet in electrohydrodynamic cone-jet regime. Int J Multiphase Flow 146:103851. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103851

    Article  CAS  Google Scholar 

  138. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20(6):362–387. https://doi.org/10.1002/mas.10008

    Article  CAS  PubMed  Google Scholar 

  139. Borra JP (2018) Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. J Aerosol Sci 125:208–236. https://doi.org/10.1016/j.jaerosci.2018.04.005

    Article  CAS  Google Scholar 

  140. Bollini R, Sample SB, Seigal SD et al (1975) Production of monodisperse charged metal particles by harmonic electrical spraying. J Colloid Interface Sci 51(2):272–277. https://doi.org/10.1016/0021-9797(75)90113-7

    Article  CAS  Google Scholar 

  141. Hogan CJ Jr, Yun KM, Chen DR et al (2007) Controlled size polymer particle production via electrohydrodynamic atomization. Colloids Surf A 311(1–3):67–76. https://doi.org/10.1016/j.colsurfa.2007.05.072

    Article  CAS  Google Scholar 

  142. Jaworek A, Sobczyk AT, Krupa A (2018) Electrospray application to powder production and surface coating. J Aerosol Sci 125:57–92. https://doi.org/10.1016/j.fopow.2018.10.023

    Article  CAS  Google Scholar 

  143. Mustika WS, Hapidin DA, Saputra C et al (2021) Dual needle corona discharge to generate stable bipolar ion for neutralizing electrosprayed nanoparticles. Adv Powder Technol 32(1):166–174. https://doi.org/10.1016/j.apt.2020.11.026

    Article  CAS  Google Scholar 

  144. Zhakin AI (2013) Electrohydrodynamics of charged surfaces. Phys Usp 56(2):141. https://doi.org/10.3367/UFNe.0183.201302c.0153

    Article  Google Scholar 

  145. Zhao S, Castle GSP, Adamiak K (2005) Comparison of conduction and induction charging in liquid spraying. J Electrostat 63(6–10):871–876. https://doi.org/10.1016/j.elstat.2005.03.048

    Article  Google Scholar 

  146. Yang W, Lojewski B, Wei Y et al (2012) Interactions and deposition patterns of multiplexed electrosprays. J Aerosol Sci 46:20–33. https://doi.org/10.1016/j.jaerosci.2011.11.004

    Article  CAS  Google Scholar 

  147. Deng W, Gomez A (2007) Influence of space charge on the scale-up of multiplexed electrosprays. J Aerosol Sci 38(10):1062–1078. https://doi.org/10.1016/j.jaerosci.2007.08.005

    Article  CAS  Google Scholar 

  148. Cloupeau M (1994) Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. J Aerosol Sci 25(6):1143–1157. https://doi.org/10.1016/0021-8502(94)90206-2

    Article  CAS  Google Scholar 

  149. Smith DPH (1986) The electrohydrodynamic atomization of liquids. IEEE Trans Ind Appl 3:527–535. https://doi.org/10.1109/TIA.1986.4504754

    Article  Google Scholar 

  150. Mutoh M, Kaieda S, Kamimura K (1979) Convergence and disintegration of liquid jets induced by an electrostatic field. J Appl Phys 50(5):3174–3179. https://doi.org/10.1063/1.326352

    Article  CAS  Google Scholar 

  151. Jayasinghe SN, Edirisinghe MJ (2004) Electrostatic atomisation of a ceramic suspension. J Eur Ceram Soc 24(8):2203–2213. https://doi.org/10.1016/j.jeurceramsoc.2003.07.001

    Article  CAS  Google Scholar 

  152. Xie J, Jiang J, Davoodi P et al (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57. https://doi.org/10.1016/j.ces.2014.08.061

    Article  CAS  PubMed  Google Scholar 

  153. Jayasinghe SN, Edirisinghe MJ (2002) Effect of viscosity on the size of relics produced by electrostatic atomization. J Aerosol Sci 33(10):1379–1388. https://doi.org/10.1016/S0021-8502(02)00088-5

    Article  CAS  Google Scholar 

  154. Rietveld IB, Kobayashi K, Yamada H et al (2006) Morphology control of poly (vinylidene fluoride) thin film made with electrospray. J Colloid Interface Sci 298(2):639–651. https://doi.org/10.1016/j.jcis.2005.12.028

    Article  CAS  PubMed  Google Scholar 

  155. Grigoriev SN, Soe TN, Malakhinsky A et al (2022) Granulation of silicon nitride powders by spray drying: a review. Materials 15(14):4999. https://doi.org/10.3390/ma15144999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21(3):258–262. https://doi.org/10.1016/0032-3861(80)90266-9

    Article  CAS  Google Scholar 

  157. Almería B, Deng W, Fahmy TM et al (2010) Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci 343(1):125–133. https://doi.org/10.1016/j.jcis.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  158. Nangrejo M, Ahmad Z, Edirisinghe M (2010) Generation of ceramic–ceramic layered composite microstructures using electrohydrodynamic co-axial flow. Ceram Int 36(4):1217–1223. https://doi.org/10.1016/j.ceramint.2010.01.012

    Article  CAS  Google Scholar 

  159. Balasubramanian K, Jayasinghe SN, Edirisinghe MJ (2006) Coaxial electrohydrodynamic atomization of ceramic suspensions. Int J Appl Ceram Technol 3(1):55–60. https://doi.org/10.1111/j.17447402.2006.02054.x

    Article  CAS  Google Scholar 

  160. Enayati M, Ahmad Z, Stride E et al (2010) Size mapping of electric field-assisted production of polycaprolactone particles. J R Soc Interface 7(Suppl_4):S393–S402. https://doi.org/10.1098/rsif.2010.0099.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hartmann J, Schür MT, Hardt S (2022) Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat Commun 13(1):289. https://doi.org/10.1038/s41467-021-27879-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang J, Qian Z, Wang X et al (2023) Numerical simulation of motion and distribution characteristics for electrospray droplets. Micromachines 14(2):396. https://doi.org/10.3390/mi14020396

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gomez A, Tang K (1994) Charge and fission of droplets in electrostatic sprays. Phys Fluids 6(1):404–414. https://doi.org/10.1063/1.868037

    Article  CAS  Google Scholar 

  164. Kim JY, Hong JG (2022) Effect of electrical conductivity on atomization characteristics of electrospray. J Appl Fluid Mech 15(5):1427–1436. https://doi.org/10.47176/jafm.15.05.1094

    Article  Google Scholar 

  165. Scheideler WJ, Chen CH (2014) The minimum flow rate scaling of Taylor cone-jets issued from a nozzle. Appl Phys Lett 104(2):024103. https://doi.org/10.1063/1.4862263

    Article  CAS  Google Scholar 

  166. Gamero-Castaño M, Magnani M (2019) The minimum flow rate of electrosprays in the cone-jet mode. Int J Fluid Mech Res 876:553–572. https://doi.org/10.1017/jfm.2019.569

    Article  MathSciNet  CAS  Google Scholar 

  167. Huh H, Wirz RE (2022) Simulation of electrospray emission processes for low to moderate conductivity liquids. Phys Fluids 34(11):112017. https://doi.org/10.1063/5.0120737

    Article  CAS  Google Scholar 

  168. Miao P, Balachandran W, Xiao P (2002) Formation of ceramic thin films using electrospray in cone-jet mode. IEEE Trans Ind Appl 38(1):50–56. https://doi.org/10.1109/2943.922450

    Article  CAS  Google Scholar 

  169. He T, Jokerst JV (2020) Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci-Uk 8(20):5555–5573. https://doi.org/10.1039/d0bm01313g

    Article  CAS  Google Scholar 

  170. Chen J, Yang H, Xu CM et al (2021) Preparation of ZrO2 microspheres by spray granulation. Powder Technol 385:234–241. https://doi.org/10.1016/j.powtec.2021.02.067

    Article  CAS  Google Scholar 

  171. Bock N, Woodruff MA, Hutmacher DW et al (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3(1):131–149. https://doi.org/10.3390/polym3010131

    Article  CAS  Google Scholar 

  172. Park CH, Lee J (2009) Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114(1):430–437. https://doi.org/10.1002/app.30498

    Article  CAS  Google Scholar 

  173. Jayasinghe SN, Edirisinghe MJ (2005) Electrostatic atomization of a ceramic suspension at pico-flow rates. Appl Phys A 80:399–404. https://doi.org/10.1007/s00339-003-2324-0

    Article  CAS  Google Scholar 

  174. Jayasinghe S, Edirisinghe M, De Wilde T (2002) A novel ceramic printing technique based on electrostatic atomization of a suspension. Mater Res Innov 6:92–95. https://doi.org/10.1007/s10019-002-0192-4

    Article  CAS  Google Scholar 

  175. Gürbüz M, Günkaya G, Doğan A (2016) Electrospray deposition of SnO2 films from precursor solution. Surf Eng 32(10):725–732. https://doi.org/10.1080/02670844.2015.1108048

    Article  CAS  Google Scholar 

  176. Abbasi A, Nasef MM, Takeshi M et al (2014) Electrospinning of nylon-6, 6 solutions into nanofibers: rheology and morphology relationships. Chin J Polym Sci 32:793–804. https://doi.org/10.1007/s10118-014-1451-8

    Article  CAS  Google Scholar 

  177. Faramarzi AR, Barzin J, Mobedi H (2016) Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers Polym 17:1806–1819. https://doi.org/10.1007/s12221-016-6685-3

    Article  CAS  Google Scholar 

  178. Mirek A, Grzeczkowicz M, Lamboux C et al (2022) Formation of disaggregated polymer microspheres by a novel method combining pulsed voltage electrospray and wet phase inversion techniques. Colloid Surface A 648:129246. https://doi.org/10.1016/j.colsurfa.2022.129246

    Article  CAS  Google Scholar 

  179. Tasci ME, Dede B, Tabak E et al (2021) Production, optimization and characterization of polylactic acid microparticles using electrospray with porous structure. Appl Sci-Basel 11(11):5090. https://doi.org/10.3390/app11115090

    Article  CAS  Google Scholar 

  180. Wang H, Li W, Li Z (2018) A facile strategy for preparing PCL/PEG block copolymer microspheres via electrospraying as coatings for cotton fabrics. Macromol Mater Eng 303(8):1800164. https://doi.org/10.1002/mame.201800164

    Article  CAS  Google Scholar 

  181. García-Farrera B, Velásquez-García LF (2019) Ultrathin ceramic piezoelectric films via room-temperature electrospray deposition of ZnO nanoparticles for printed GHz devices. Acs Appl Mater Inter 11(32):29167–29176. https://doi.org/10.1021/acsami.9b09563

    Article  CAS  Google Scholar 

  182. Ikeuchi M, Tane R, Ikuta K (2012) Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering. Biomed Microdevices 14:35–43. https://doi.org/10.1007/s10544-011-9583-x

    Article  CAS  PubMed  Google Scholar 

  183. Hirose Y, Natori I, Sato H et al (2011) Fabrication of fine particles of semiconducting polymers by electrospray deposition. Ieice T Electron 94(2):164–169. https://doi.org/10.1587/transele.E94.C.164

    Article  Google Scholar 

  184. Briceño-Gutierrez D, Salinas-Barrera V, Vargas-Hernández Y et al (2015) On the ultrasonic atomization of liquids. Phys Procedia 63:37–41. https://doi.org/10.1016/j.phpro.2015.03.006

    Article  Google Scholar 

  185. Galleguillos R (2022) Acoustic cavitation detection during ultrasonic atomization process. Appl Acoust 192:108716. https://doi.org/10.1016/j.apacoust.2022.108716

    Article  Google Scholar 

  186. Song YL, Cheng CH, Reddy MK (2021) Numerical analysis of ultrasonic nebulizer for onset amplitude of vibration with atomization experimental results. Water 13(14):1972. https://doi.org/10.3390/w13141972

    Article  CAS  Google Scholar 

  187. Yule AJ, AI-Suleimani Y (2000) On droplet formation from capillary waves on a vibrating surface. P Roy Soc A-Math Phy 456(1997):1069–1085. https://doi.org/10.1098/rspa.2000.0551

    Article  Google Scholar 

  188. Zhang Y, Yuan S, Wang L (2021) Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization. Exp Therm Fluid Sci 120:110219. https://doi.org/10.1016/j.expthermflusci.2020.110219

    Article  CAS  Google Scholar 

  189. Lang RJ (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 34(1):6–8. https://doi.org/10.1121/1.1909020

    Article  Google Scholar 

  190. Neppiras EA, Noltingk BE (1951) Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc London, Sect B 64(12):1032

    Article  Google Scholar 

  191. Kauer M, Belova-Magri V, Cairós C et al (2018) High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes. Ultrason Sonochem 48:39–50. https://doi.org/10.1016/j.ultsonch.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  192. Avvaru B, Patil MN, Gogate PR et al (2006) Ultrasonic atomization: effect of liquid phase properties. Ultrasonics 44(2):146–158. https://doi.org/10.1016/j.ultras.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  193. Simon JC, Sapozhnikov OA, Khokhlova VA et al (2015) Ultrasonic atomization of liquids in drop-chain acoustic fountains. Int J Fluid Mech Res 766:129–146. https://doi.org/10.1017/jfm.2015.11

    Article  CAS  Google Scholar 

  194. Rooze J, Rebrov EV, Schouten JC et al (2013) Dissolved gas and ultrasonic cavitation–a review. Ultrason Sonochem 20(1):1–11. https://doi.org/10.1016/j.ultsonch.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  195. Bouguslavskii YY, Eknadiosyants OK (1969) Physical mechanism of the acoustic atomization of a liquid. Sov Phys Acoust 15

  196. Rajan R, Pandit AB (2001) Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics 39(4):235–255. https://doi.org/10.1016/S0041-624X(01)00054-3

    Article  CAS  PubMed  Google Scholar 

  197. Yuan S, Zhang Y, Gao Y (2022) Faraday wave instability characteristics of a single droplet in ultrasonic atomization and the sub-droplet generation mechanism. Exp Exp Therm Fluid Sci 134:110618. https://doi.org/10.1016/j.expthermflusci.2022.110618

    Article  CAS  Google Scholar 

  198. Xie T, Zeng Y, Gui Z et al (2023) Piezoelectric atomization of liquids with dynamic viscosities up to 175 cP at room temperature. Ultrason Sonochem 94:106331. https://doi.org/10.1016/j.ultsonch.2023.106331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wisutmethangoon S, Plookphol T, Sungkhaphaitoon P (2011) Production of SAC305 powder by ultrasonic atomization. Powder Technol 209(1–3):105–111. https://doi.org/10.1016/j.powtec.2011.02.016

    Article  CAS  Google Scholar 

  200. Zang D, Yu Y, Chen Z et al (2017) Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions. Adv Colloid Interface Sci 243:77–85. https://doi.org/10.1016/j.cis.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  201. Naka M, Hasegawa K (2020) Breakup characteristics of levitated droplets in a resonant acoustic field. Phys Fluids 32(12):124109. https://doi.org/10.1063/5.0035994

    Article  CAS  Google Scholar 

  202. Carpentier JB, Baillot F, Blaisot JB et al (2009) Behavior of cylindrical liquid jets evolving in a transverse acoustic field. Phys Fluids 21(2):023601. https://doi.org/10.1063/1.3075823

    Article  CAS  Google Scholar 

  203. Fritsching U, Bauckhage K (1997) Ultrasonic field characteristics in resonant standing waves. Ultrasonics 35(2):151–156. https://doi.org/10.1016/S0041-624X(96)00100-X

    Article  Google Scholar 

  204. Bauckhage K, Andersen O, Hansmann S et al (1996) Production of fine powders by ultrasonic standing wave atomization. Powder Technol 86(1):77–86. https://doi.org/10.1016/0032-5910(95)03040-9

    Article  CAS  Google Scholar 

  205. Andersen O, Hansmann S, Bauckhage K (1996) Production of fine particles from melts of metals or highly viscous fluids by ultrasonic standing wave atomization. Part Part Syst Char 13(3):217–223. https://doi.org/10.1002/ppsc.19960130308sac

    Article  Google Scholar 

  206. Pohlman R, Heisler K, Cichos M (1974) Powdering aluminium and aluminium alloys by ultrasound. Ultrasonics 12(1):11–15. https://doi.org/10.1016/0041-624X(74)90080-8

    Article  CAS  Google Scholar 

  207. Kruus P (1988) Production of zinc dust using ultrasound. Ultrasonics 26(4):216–217. https://doi.org/10.1016/0041-624X(88)90070-4

    Article  CAS  Google Scholar 

  208. Alavi SH, Harimkar SP (2017) Ultrasonic vibration-assisted laser atomization of stainless steel. Powder Technol 321:89–93. https://doi.org/10.1016/j.powtec.2017.08.007

    Article  CAS  Google Scholar 

  209. Żrodowski Ł, Wróblewski R, Choma T et al (2021) Novel cold crucible ultrasonic atomization powder production method for 3D printing. Materials 14(10):2541. https://doi.org/10.3390/ma14102541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Eskandari Sabzi H (2019) Powder bed fusion additive layer manufacturing of titanium alloys. Mater Sci Tech-Lond 35(8):875–890. https://doi.org/10.1080/02670836.2019.1602974

    Article  CAS  Google Scholar 

  211. Spitans S, Franz H, Baake E (2020) Numerical modeling and optimization of electrode induction melting for inert gas atomization (EIGA). Metall Mater Trans B 51:1918–1927. https://doi.org/10.1007/s11663-020-01934-5

    Article  CAS  Google Scholar 

  212. Hinrichs F, Kauffmann A, Schliephake D et al (2021) Flexible powder production for additive manufacturing of refractory metal-based alloys. Metals 11(11):1723. https://doi.org/10.3390/met11111723

    Article  CAS  Google Scholar 

  213. Yasuda K, Bando Y, Yamaguchi S et al (2005) Analysis of concentration characteristics in ultrasonic atomization by droplet diameter distribution. Ultrason Sonochem 12(1–2):37–41. https://doi.org/10.1016/j.ultsonch.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  214. Ramisetty KA, Pandit AB, Gogate PR (2013) Investigations into ultrasound induced atomization. Ultrason Sonochem 20(1):254–264. https://doi.org/10.1016/j.ultsonch.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  215. Barba AA, d’Amore M, Cascone S et al (2009) Intensification of biopolymeric microparticles production by ultrasonic assisted atomization. Chem Eng Process 48(10):1477–1483. https://doi.org/10.1016/j.cep.2009.08.004

    Article  CAS  Google Scholar 

  216. Gao S, Guo S, Dong G et al (2021) Numerical simulation and experiment for the ultrasonic field characteristics of ultrasonic standing wave atomization. J Braz Soc Mech Sci 43(6):318. https://doi.org/10.1007/s40430-021-03041-1

    Article  Google Scholar 

  217. Bałasz B, Bielecki M, Gulbiński W (2023) Comparison of ultrasonic and other atomization methods in metal powder production. J Ach Mater Manuf Eng 116(1):11–24. https://doi.org/10.5604/01.3001.0016.3393

    Article  Google Scholar 

  218. Sehhat MH, Perez-Palomino D, Wiedemeier C et al (2023) Characterization of virgin, re-used, and oxygen-reduced copper powders processed by the plasma spheroidization process. Adv Powder Technol 34(1):103885. https://doi.org/10.1016/j.apt.2022.103885

    Article  CAS  Google Scholar 

  219. Santiago-Herrera M, Ibáñez J, De Pamphilis M et al (2023) Comparative life cycle assessment and cost analysis of the production of Ti6Al4V-TiC metal–matrix composite powder by high-energy ball milling and Ti6Al4V powder by gas atomization. Sustainability 15(8):6649. https://doi.org/10.3390/su15086649

    Article  CAS  Google Scholar 

  220. Grace JM, Marijnissen JCM (1994) A review of liquid atomization by electrical means. J Aerosol Sci 25(6):1005–1019. https://doi.org/10.1016/0021-8502(94)90198-8

    Article  CAS  Google Scholar 

  221. Ryan CN, Smith KL, Stark JPW (2012) Characterization of multi-jet electrospray systems. J Aerosol Sci 51:35–48. https://doi.org/10.1016/j.jaerosci.2012.03.007

    Article  CAS  Google Scholar 

  222. Ryan CN, Smith KL, Stark JPW (2014) The flow rate sensitivity to voltage across four electrospray modes. Appl Phys Lett 104(8):084101. https://doi.org/10.1063/1.4866670

    Article  CAS  Google Scholar 

  223. Gan Y, Li H, Jiang Z et al (2019) An experimental investigation on the electrospray characteristics in a meso-scale system at different modes. Exp Therm Fluid Sci 106:130–137. https://doi.org/10.1016/j.expthermflusci.2019.04.029

    Article  CAS  Google Scholar 

  224. Rulison AJ, Flagan RC (1993) Scale–up of electrospray atomization using linear arrays of Taylor cones. Rev Sci Instrum 64(3):683–686. https://doi.org/10.1063/1.1144197

    Article  CAS  Google Scholar 

  225. Tatemoto Y, Ishikawa R, Takeuchi M et al (2007) An electrospray method using a multi-capillary nozzle emitter. Chem Eng Technol 30(9):1274–1279. https://doi.org/10.1002/ceat.200700060

    Article  CAS  Google Scholar 

  226. Regele JD, Papac MJ, Rickard MJA et al (2002) Effects of capillary spacing on EHD spraying from an array of cone jets. J Aerosol Sci 33(11):1471–1479. https://doi.org/10.1016/S0021-8502(02)00093-9

    Article  CAS  Google Scholar 

  227. Kumar V, Srivastava A, Shanbhogue KM et al (2018) Electrospray performance of interacting multi-capillary emitters in a linear array. J Micromech Microeng 28(3):035005. https://doi.org/10.1088/1361-6439/aaa1d5

    Article  CAS  Google Scholar 

  228. Herdovics B, Cegla F (2019) Compensation of phase response changes in ultrasonic transducers caused by temperature variations. Struct Control Hlth 18(2):508–523. https://doi.org/10.1177/1475921718759272

    Article  Google Scholar 

Download references

Funding

This work was supported by Liaoning Provincial Science and Technology Plan Project (Grant No. 2021JH2/10100012), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002), China Postdoctoral Science Foundation (Grant No. 2023M732826) and Liaoning University of Technology Doctoral research launch project (Grant No. XB2021002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shuo Feng and Dongzhou Jia. The first draft of the manuscript was written by Shuo Feng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongzhou Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Jia, D., Fu, Y. et al. Preparation of additive manufacturing powder by external field–enabled: a comparative assessment. Int J Adv Manuf Technol 131, 3239–3265 (2024). https://doi.org/10.1007/s00170-023-12073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12073-x

Keywords

Navigation