Skip to main content

Advertisement

Log in

A review of digital twin intelligent assembly technology and application for complex mechanical products

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Digital twin (DT) technology has become an effective means of industrial digital transformation due to its ability to realize virtual-real mapping, data fusion, etc. In recent years, the application of DT technology to the assembly process of complex mechanical products in multiple fields can effectively overcome the drawbacks of the current assembly method, which is a new strategy for achieving high-precision and high-efficiency intelligent assembly. However, there are few reviews of DT’s intelligent assembly technology and application for complex mechanical products. Based on the composition of the DT assembly system, the paper systematically summarizes the critical technologies of DT assembly, including DT model representation of the assembly objects, DT model construction of the assembly process, and DT data collection/management. The application of the DT assembly model based on virtual and real fusion in online monitoring, quality prediction, process planning, real-time control, etc. is comprehensively reviewed. Finally, the challenges faced by DT intelligent assembly of complex mechanical products are described, and future research directions are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared for the time being. Data will be made available upon request.

References

  1. Sjöberg A, Önnheim M, Frost O, Cronrath C, Gustavsson E, Lennartson B, Jirstrand M (2023) Online geometry assurance in individualized production by feedback control and model calibration of digital twins. J Manuf Syst 66:71–81. https://doi.org/10.1016/j.jmsy.2022.11.011

    Article  Google Scholar 

  2. Mazumder A, Sahed MF, Tasneem Z et al (2023) Towards next generation digital twin in robotics: trends, scopes, challenges, and future. Heliyon 9:1–25. https://doi.org/10.1016/j.heliyon.2023.e13359

    Article  Google Scholar 

  3. Liu X, Jiang D, Tao B, Xiang F, Jiang G, Sun Y, Kong J, Li G (2023) A systematic review of digital twin about physical entities, virtual models, twin data, and applications. Adv Eng Inform 55:1–18. https://doi.org/10.1016/j.aei.2023.101876

    Article  Google Scholar 

  4. Tao F, Liu W, Zhang M et al (2019) Five-dimension digital twin model and its ten applications. Comput Integr Manuf Syst 25(1):1–18. https://doi.org/10.13196/j.cims.2019.01.001

    Article  Google Scholar 

  5. Wang X, Wang Y, Tao F, Liu A (2021) New paradigm of data-driven smart customisation through digital twin. J Manuf Syst 58(1):270–280. https://doi.org/10.1016/j.jmsy.2020.07.023

    Article  Google Scholar 

  6. Qiu C, Zhou S, Liu Z, Gao Q, Tan J (2019) Digital assembly technology based on augmented reality and digital twins: a review. Virtual Real Intell Hardw 1(6):597–610. https://doi.org/10.1016/j.vrih.2019.10.002

    Article  Google Scholar 

  7. Zhong D, Xia Z, Zhu Y, Duan J (2023) Overview of predictive maintenance based on digital twin technology. Heliyon 9:1–23. https://doi.org/10.1016/j.heliyon.2023.e145344

    Article  Google Scholar 

  8. Sun H, Yan J, Wei X, Chang Z (2020) Digital twin-driven aero-engine assembly technology. China Mech Eng 31(7):833–841. https://doi.org/10.3969/ji.ssn.1004-132X.2020.07.009

    Article  Google Scholar 

  9. Latif H, Starly B (2020) A simulation algorithm of a digital twin for manual assembly process. Procedia Manuf 48:932–939. https://doi.org/10.1016/j.promfg.2020.05.132

    Article  Google Scholar 

  10. Sun X, Zhang R, Liu S, Lv Q, Bao J, Li J (2022) A digital twin-driven human–robot collaborative assembly-commissioning method for complex products. Int J Adv Manuf Technol (9/10):1–14. https://doi.org/10.21203/rs.3.rs-506544/v1

  11. Ma Y, Zhou H, He H, Jiao G, Wei S (2019) A digital twin-based approach for quality control and optimization of complex product assembly. 2019 Int Conf on Artif Intell Adv Manuf (AIAM). IEEE 762-767. https://doi.org/10.1109/AIAM48774.2019.00157

  12. Hu X, Zhang L (2021) Study on application of digital twin workshop in assembly process of complex products. Aeronaut Manuf Technol 64(3):87–96. https://doi.org/10.16080/j.issn1671-833x.2021.03.087

    Article  MathSciNet  Google Scholar 

  13. Yin Y, Zheng P, Li C, Wang L (2023) A state-of-the-art survey on augmented reality-assisted digital twin for futuristic human-centric industry transformation. Robot Comput Integr Manuf 81:1–21. https://doi.org/10.1016/j.rcim.2022.102515

    Article  Google Scholar 

  14. Li J, Pang D, Zheng Y, Le X (2021) Digital twin enhanced assembly based on deep reinforcement learning. 2021 11th Int Conf Inf Sci Technol (ICIST). IEEE 432-437. https://doi.org/10.1109/ICIST52614.2021.9440555

  15. Jia W, Wang W, Zhang Z (2022) From simple digital twin to complex digital twin part I: a novel modeling method for multi-scale and multi-scenario digital twin. Adv Eng Informatics 53:1–12. https://doi.org/10.1016/j.aei.2022.101706

    Article  Google Scholar 

  16. Song X, Lu Y, Liu Z, Yang C, Wang P, Xue F (2018) Research on application of digital assembly technology based on MBD in spacecraft field. IOP Conf Ser Mater Sci Eng 408(1):1–8. https://doi.org/10.1088/1757-899X/408/1/012026

    Article  Google Scholar 

  17. Zhang Y, Jiang J, Bi Y (2022) Aircraft determinate assembly technology and its application. Aeronaut Manuf Technol 65(18):38–45+62. https://doi.org/10.16080/j.issn1671-833x.2022.18.038

    Article  Google Scholar 

  18. Cao Z, Shan J, Wang Z, Chen H (2022) Exploration and practice of digital twin architecture for aero-engine manufacturing. Aeronaut Manuf Technol 65(19):40–49. https://doi.org/10.16080/j.issn1671-833x.2022.19.040

    Article  Google Scholar 

  19. Zhuang C, Liu J, Xiong H, Ding X, Liu S, Weng G (2017) Connotation, architecture and trends of product digital twins. Comput Integr Manuf Syst 23(4):753–768. https://doi.org/10.13196/j.cims.2017.04.010

    Article  Google Scholar 

  20. Zhang L, Lei P, Tan H, Zeng D, Zhang W, Zeng C (2022) Study and application of symmetry technology for MBD digital-modelinformation based on secondary development of CATIA CAA. Mod Manuf Eng (6):49–55+62. https://doi.org/10.16731/j.cnki.1671-3133.2022.06.008

  21. Zhi J, Yang J, Zhu C, Liu S, Nabil A, Cao Y (2022) A modeling method of complex assembly based on digital twin. Procedia CIRP 114:79–87. https://doi.org/10.1016/j.procir.2022.10.035

    Article  Google Scholar 

  22. Miller AM, Alvarez R, Hartman N (2018) Towards an extended model-based definition for the digital twin. Comput Aided Des Appl 15(6):880–891. https://doi.org/10.1080/16864360.2018.1462569

    Article  Google Scholar 

  23. Bao Q, Zhao G, Yu Y, Dai S, Wang W (2022) Ontology-based modeling of part digital twin oriented to assembly. Proc IMechE Part B J Eng Manuf 236(1-2):16–28. https://doi.org/10.1177/0954405420941160

    Article  Google Scholar 

  24. Liu S, Bao J, Lu Y, Li J, Lu S, Sun X (2021) Digital twin modeling method based on biomimicry for machining aerospace components. J Manuf Syst 58:180–195. https://doi.org/10.1016/j.jmsy.2020.04.014

    Article  Google Scholar 

  25. Sun X, Liu S, Shen X, Huang D, Bao J (2022) Digital twin-driven intelligent assembly for high precision products. Comput Integr Manuf Syst 28(6):1704–1716. https://doi.org/10.13196/j.cims.2022.06.010

    Article  Google Scholar 

  26. Sun X, Liu S, Gu X, Bao J, Li J, Hu F (2022) Multi-scale online monitoring method of aerospace products assembly workshop based on digital twin. Stud Syst Decis Control 423:23–40. https://doi.org/10.1007/978-3-030-96802-1_2

    Article  Google Scholar 

  27. Lv C, Gong L, Liu H, Wu G (2018) Research of three-dimensional drawings expression and system implementation based on MBD. J Graph 39(5):951–957. https://doi.org/10.11996/JG.j.2095-302X.2018050951

    Article  Google Scholar 

  28. Wang S, Guo Y, Qiao X, Hu Y, Le B (2021) Research on assembly process technology based on digital twin. Modular Mach Tool Autom Manuf Tech (8):131–134. https://doi.org/10.13462/j.cnki.mmtamt.2021.08.031

  29. Yi Y, Liu X, Feng J, Liu Y, Liu J, Ni Z (2019) Representation and generation method of digital twin-oriented product skin mode. Comput Integr Manuf Syst 25(6):1454–1462. https://doi.org/10.13196/j.cims.2019.06.013

    Article  Google Scholar 

  30. Yi Y (2021) Research on key technologies of complex product assembly accuracy prediction based on digital twin. Southeast University. https://doi.org/10.27014/d.cnki.gdnau.2021.003903

    Book  Google Scholar 

  31. Liu Z, Zhou S, Qiu C, Tan J (2019) Assembly variation analysis of complicated products based on rigid–flexible hybrid vector loop. Proc IMechE Part B J Eng Manuf 233(10):2099–2114. https://doi.org/10.1177/0954405418816851

    Article  Google Scholar 

  32. Yan X, Ballu A (2019) Review and comparison of form error simulation methods for computer-aided tolerancing. J Comput Inf Sci Eng 19(1):1–46. https://doi.org/10.1115/1.4041476

    Article  Google Scholar 

  33. Schleich B, Anwer N, Mathieu L, Wartzack S (2017) Shaping the digital twin for design and production engineering. CIRP Ann 66(1):141–144. https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  34. Zhang M, Anwer N, Stockinger A, Mathieu L, Wartzack S (2013) Discrete shape modeling for skin model representation. Proc IMechE Part B J Eng Manuf 227(5):672–680. https://doi.org/10.1177/0954405412466987

    Article  Google Scholar 

  35. Chen ZY, Liu Y, Xu XD, Li K, Chen XL (2015) Membrane reflector surface reconstruction using zernike polynomials and two-stage algorithm. IFAC PapersOnLine 48(28):632–637. https://doi.org/10.1016/j.ifacol.2015.12.200

    Article  Google Scholar 

  36. Pacella M, Colosimo BM (2013) Different formulations of principal component analysis for 3D profiles and surfaces modeling. Procedia CIRP 12:474–479. https://doi.org/10.1016/j.procir.2013.09.081

    Article  Google Scholar 

  37. Guo J, Li B, Liu Z, Hong J, Wu X (2016) Integration of geometric variation and part deformation into variation propagation of 3-D assemblies. Int J Production Res 54(19):5708–5721. https://doi.org/10.1080/00207543.2016.1158881

    Article  Google Scholar 

  38. Shi Z, Jiang H, Zhang M (2017) Modeling on skin model of gears in new-generation geometrical product specification. China Sci Paper 12(16):1810–1815

    Google Scholar 

  39. Wei Y, Hu T, Dong L, Ma S (2023) Digital twin-driven manufacturing equipment development. Robot Comput Integr Manuf 83:1–21. https://doi.org/10.1016/j.rcim.2023.102557

    Article  Google Scholar 

  40. Liu J,Hui Y,Kang Y (2023) 3D deviation analysis of mid-fuselage docking assembly based on digital twins. Mach Des Manuf 385(3):19-22. https://doi.org/10.19356/j.cnki.1001-3997.20230216.014

    Article  Google Scholar 

  41. Zhang HY, Zhu LC, Cai XH, Dong LT (2022) Noise removal algorithm based on point cloud classification. 2022 Int Semin Comput Sci Eng Technol (SCSET). IEEE, 93-96. https://doi.org/10.1109/SCSET55041.2022.00030

  42. Ding Z, Sun Y, Duan L, Liu S, Bao J (2022) AR multiplayer collaborative assembly method based on digital twin. Comput Integr Manuf Syst 1–25. http://kns.cnki.net/kcms/detail/11.5946.TP.20220826.1833.008.html. Accessed 25 June 2023

  43. Lv C, Liu Z, Ai Y, Yu Z (2015) Assembly joint surface error modeling and tolerance optimization in the case of coupled tolerance. J Mech Eng 51(18):108–118. https://doi.org/10.3901/JME.2015.18.108

    Article  Google Scholar 

  44. Guo F, Liu J, Zou F, Zhai Y, Wang Z, Li S (2019) Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin. J Mech Eng 55(17):110–132. https://doi.org/10.3901/JME.2019.17.110

    Article  Google Scholar 

  45. Li D, Li M, Zhang G, Wang Y, Ran Y (2015) Mechanism analysis of deviation sourcing and propagation for meta-action assembly unit. J Mech Eng 51(17):146–155. https://doi.org/10.3901/JME.2015.17.146

    Article  Google Scholar 

  46. Söderberg R, Wärmefjord K, Carlson JS, Lindkvist L (2017) Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann 66(1):137–140. https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  47. Liu T, Cao YL, Zhao Q, Yang J (2019) Assembly tolerance analysis based on the Jacobian model and skin model shapes. Assem Autom 39(2):245–253. https://doi.org/10.1108/AA-10-2017-128

    Article  Google Scholar 

  48. Wang K, Liu D, Liu Z, Wang Q, Tan J (2021) An assembly precision analysis method based on a general part digital twin model. Robot Comput Integr Manuf 68:1–17. https://doi.org/10.1016/j.rcim.2020.102089

    Article  Google Scholar 

  49. Liu T, Cao Y, Wang J, Yang J (2016) Assembly error calculation with consideration of part deformation. Procedia Cirp 43:58–63. https://doi.org/10.1016/j.procir.2016.02.007

    Article  Google Scholar 

  50. Zhou G, Zou Y, Zhang C, Chang F, Men S (2023) Digital twin modeling method for complex assembly process considering multidimensional error. Comput Integr Manuf Syst 1–23. http://kns.cnki.net/kcms/detail/11.5946.tp.20230117.1341.003.html. Accessed 25 June 2023

  51. Liu J, Zhang Z, Ding X, Shao N (2018) Integrating form errors and local surface deformations into tolerance analysis based on skin model shapes and a boundary element method. Comput Aided Des 104:45–59. https://doi.org/10.1016/j.cad.2018.05.005

    Article  Google Scholar 

  52. Zhang Z, Liu J, Ding X, Shao N (2018) Tolerance analysis of annular surfaces considering form errors and local surface deformations. Procedia CIRP 75:291–296. https://doi.org/10.1016/j.procir.2018.04.043

    Article  Google Scholar 

  53. Mu X, Wang Y, Yuan B, Sun W, Liu C, Sun Q (2021) A new assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts. J Manuf Syst 61:112–124. https://doi.org/10.1016/j.jmsy.2021.08.010

    Article  Google Scholar 

  54. Zeng W, Rao YQ, Wang P, Yi WH (2018) A solution of worst-case tolerance analysis for partial parallel chains based on the Unified Jacobian-Torsor model. Precis Eng 47:276–291. https://doi.org/10.1016/j.precisioneng.2016.09.002

    Article  Google Scholar 

  55. Yang X,Fan Z,Ran Y,Zhang G, Wang Z, Chen Y (2022) Construction of digital twin model for transmission system based on meta-action theory. Comput Integr Manuf Syst 1–25. http://kns.cnki.net/kcms/detail/11.5946.tp.20221018.0804.002.html. Accessed 25 June 2023

  56. Grégorio JL, Lartigue C, Thiébaut F, Lebrun R (2021) A digital twin-based approach for the management of geometrical deviations during assembly processes. J Manuf Syst 58:108–117. https://doi.org/10.1016/j.jmsy.2020.04.020

    Article  Google Scholar 

  57. Liu Y, Zhang G, Ran Y (2021) Geometric element error modeling considering multi-tolerance coupling and accuracy prediction of product assembly. J Chongqing Univ 44(1):11–19. https://doi.org/10.11835/ji.ssn.1000-582X.2020.215

    Article  Google Scholar 

  58. Polini W, Corrado A (2020) Digital twin of composite assembly manufacturing process. Int J Production Research 58(17):5238–5252. https://doi.org/10.1080/00207543.2020.1714091

    Article  Google Scholar 

  59. Guo F, Zou F, Liu J, Xiao Q, Wang Z (2019) Assembly error propagation modeling and coordination error chain construction for aircraft. Assem Autom 39(2):308–322. https://doi.org/10.1108/AA-07-2018-100

    Article  Google Scholar 

  60. Yi Y, Liu XJ, Liu TY, Ni ZH (2021) A generic integrated approach of assembly tolerance analysis based on skin model shapes. Proc IMechE Part B J Eng Manuf 235(4):689–704. https://doi.org/10.1177/0954405420958862

    Article  Google Scholar 

  61. Zhang M, Zhang Z, Shi L, Gao P, Zhang W (2019) Assembly error modeling and calculating method of precision mechanical system. J Phys Conf Ser 1345(2):1–8. https://doi.org/10.1088/1742-6596/1345/2/022051

    Article  Google Scholar 

  62. Zhang H, Qi Q, Ji W, Tao F (2023) An update method for digital twin multi-dimension models. Robot Comput Integr Manuf 80:102481. https://doi.org/10.1016/j.rcim.2022.102481

    Article  Google Scholar 

  63. Du R, Li G, Zhang M, Wang D (2021) Digital twin modeling method for assembly quality control of complex products. 2021 4th Int Conf Circuits, Syst and Simul (ICCSS). IEEE 72-78. https://doi.org/10.1109/ICCSS51193.2021.9464200

  64. Schleich B, Wärmefjord K, Söderberg R, Wartzack S (2018) Geometrical variations management 4.0: towards next generation geometry assurance. Procedia CIRP 75:3–10. https://doi.org/10.1016/j.procir.2018.04.078

    Article  Google Scholar 

  65. Zakharov OV, Pugin KG, Seliverstova LV (2022) Mathematical model of cylindrical parts assembly using digital twins. 2022 Int Russian Autom Conf (RusAutoCon). IEEE 40-44. https://doi.org/10.1109/RusAutoCon54946.2022.9896288

  66. Men S, Zhou G, Zhang C, Chao F, Zou Y (2023) Assembly error modeling and traceability analysis method based on digital twin. J Xi’an Jiaoyong Univ 57(1):175–184. https://doi.org/10.7652/xjtuxb202301017

    Article  Google Scholar 

  67. Yi Y, Feng J, Liu J, Chen C, Liu X, Ni Z (2021) Model expression and accuracy prediction method of digital twin-based assembly for complex products. Comput Integr Manuf Syst 27(2):617–630. https://doi.org/10.13196/j.cims.2021.02.026

    Article  Google Scholar 

  68. Zhang Y, Sun H, Zhou P, Li H (2023) Digital twin-driven dynamic prediction and control method for assembly clearance of multi-stage rotor and stator. Comput Integr Manuf Syst 1–16. http://kns.cnki.net/kcms/detail/11.5946.TP.20230117.1434.006.html. Accessed 25 June 2023

  69. Cao Y, Xiong H, Zhuang C, Liu J, Ning W (2021) Dynamic scheduling of complex product discrete assembly workshop based on digital twin. Comput Integr Manuf Syst 27(2):557–568. https://doi.org/10.13196/j.cims.2021.02.022

    Article  Google Scholar 

  70. Cai HX, Zhang W, Zhu Z (2019) Quality management and analysis of aircraft final assembly based on digital twin. 2019 11th Int Conf Intell Hum-Mach Syst Cybern (IHMSC). IEEE 1: 202-205. https://doi.org/10.1109/IHMSC.2019.00054

  71. Yu H, Du FZ (2019) Flexible inspection technology for large -scale product based on combined measurement. Comput Integr Manuf Syst 25(5):1037–1046. https://doi.org/10.13196/j.cims.2019.05.001

    Article  Google Scholar 

  72. Tao F, Cheng Y, Cheng JF, Zhang M, Xu WJ, Qi QL (2018) Theories and technologies for cyber-physical fusion in digital twin shop-floor. Comput Integr Manuf Syst 23(8):1603–1611. https://doi.org/10.13196/j.cims.2017.08.001

    Article  Google Scholar 

  73. Zhuang CB, Liu JH, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96:1149–1163. https://doi.org/10.1007/s00170-018-1617-6

    Article  Google Scholar 

  74. Rebmann A, Knoch S, Emrich A, Fettke P, Loos P (2020) A multi-sensor approach for digital twins of manual assembly and commissioning. Procedia Manuf 51:549–556. https://doi.org/10.1016/j.promfg.2020.10.077

    Article  Google Scholar 

  75. Zhang J, Liu J, Zhuang C, Guo C, Ma H (2023) A data-driven smart management and control framework for a digital twin shop floor with multi-variety multi-batch production. Int J Adv Manuf Technol:1–17. https://doi.org/10.1007/s00170-023-10815-5

  76. Zhuang C, Gong J, Liu J (2021) Digital twin-based assembly data management and process traceability for complex products. J Manuf Syst 58:118–131. https://doi.org/10.1016/j.jmsy.2020.05.011

    Article  Google Scholar 

  77. Jin J, Pang C, Fang Y, Zhao L, Li J (2021) Digital twin-based visual assembly process design for aircraft tools. Aeronaut Manuf Technol 66(1/2):92–100+106. https://doi.org/10.16080/j.issn1671-833x.2023.01/02.092

    Article  Google Scholar 

  78. Qiu F, Zhao Z, Liu L, Sun K, Xu M (2022) Real-time monitoring method of assembly workshop resources based on digital twin. Ordnance Ind Autom 41(11):18–23. https://doi.org/10.7690/bgzdh.2022.11.005

    Article  Google Scholar 

  79. Gross KA, Lungevics J, Zavickis J, Pluduma L (2018) A comparison of quality control methods for scratch detection on polished metal surfaces. Meas 117:397–402. https://doi.org/10.1016/j.measurement.2017.12.022

    Article  Google Scholar 

  80. Liu Z, Yang J, Wang J, Lin Y (2022) Design of modified model of intelligent assembly digital twins based on optical fiber sensor network. Digit Commun Netw.:1–14. https://doi.org/10.1016/j.dcan.2022.06.013

  81. Wang Z, Yang P, Chen S, Zhao Y, Wu Y, Feng P, Chang Z (2022) Research on construction of digital twin model and deviation transfer analysis of cabin door of airplane. Aeronaut Manuf Technol 65(12):36–47. https://doi.org/10.16080/j.issn1671-833x.2022.12.036

    Article  Google Scholar 

  82. Chen L, Zhong G, Han Z, Li Q, Wang Y, Pan H (2022) Binocular visual dimension measurement method for rectangular workpiece with a precise stereoscopic matching algorithm. Meas Sci Technol 34(3):035010. https://doi.org/10.1088/1361-6501/aca707

    Article  Google Scholar 

  83. Feng Y, Li K, Gao Y, Zhen H, Tan J (2020) Shaft surface defect detection method based on feature andmorphology reconstruction. J Zhejiang Univ (Eng Sci) 54(3):427–434. https://doi.org/10.3785/j.issn.1008-973X.2020.03.001

    Article  Google Scholar 

  84. Yang L, Zhu J, Wu B, Yang X (2011) Workspace measurement positioning system based on optical scanning and wireless sensor network. Key Eng Mater 467-469:1953–1958. https://doi.org/10.4028/www.scientific.net/KEM.467-469.1953

    Article  Google Scholar 

  85. Li W, Tian X, Geng J, Zhao D, Zhang M (2018) Digital combined measuring technology of aircraft large components outline. Aeronaut Manuf Technol 61(8):80–84. https://doi.org/10.16080/j.issn1671-833x.2018.08.080

    Article  Google Scholar 

  86. Wang W, Wang CX, Kong LT, Helal A (2019) Research on the digital combination measurement method of aircraft wall panel components. Electron Meas Technol 42(7):74–78. https://doi.org/10.19651/j.cnki.emt.1802301

    Article  Google Scholar 

  87. Jing S, Zhang P, Wang Z, Zhao G (2015) Digital combined measuring technology assisted quality inspection foraircraft assembly. J Beijing Univ Aeronaut Astronaut 41(7):1196–1201. https://doi.org/10.13700/j.bh.1001-5965.2014.0635

    Article  Google Scholar 

  88. Johansson O (2017) Testing and evaluation of virtual commissioning-case study of an existing robot cell at Scania modelled with 3Dexperience, Gothenburg, Sweden

  89. Li L, Aslam S, Wileman A, Perinpanayagam S (2021) Digital twin in aerospace industry: a gentle introduction. IEEE Access 10:9543–9562. https://doi.org/10.1109/ACCESS.2021.3136458

    Article  Google Scholar 

  90. Duan J, Ma T, Zhang Q, Liu Z, Qin J (2023) Design and application of digital twin system for the blade-rotor test rig. J Int Manuf 34(2):753–769. https://doi.org/10.1007/s10845-021-01824-w

    Article  Google Scholar 

  91. Li Y, Liu W, Zhang Y, Gao C, Chen Q, Ji Y (2023) Interactive real-time monitoring and information traceability for complex aircraft assembly field based on digital twin. IEEE Trans Ind Informatics:1–13. https://doi.org/10.1109/TII.2023.3234618

  92. Wang Y, Feng J, Liu J, Liu X, Wang J (2021) Case study of digital twin-based human-robot collaborative work-cell for satellite assembly. 2021 IEEE Int Conf Ind Eng Eng Manag (IEEM). IEEE 698-702. https://doi.org/10.1109/IEEM50564.2021.9672807

  93. Zhang Q, Zheng S, Yu C, Wang Q, Ke Y (2022) Digital thread-based modeling of digital twin framework for the aircraft assembly system. J Manuf Syst 65:406–420. https://doi.org/10.1016/j.jmsy.2022.10.004

    Article  Google Scholar 

  94. Assad F, Konstantinov S, Ahmad M, Rushforth E, Harrison R (2021) Utilising web-based digital twin to promote assembly line sustainability. 2021 4th IEEE Int Conf Ind Cyber-Physical Syst (ICPS). IEEE 381-386. https://doi.org/10.1109/ICPS49255.2021.9468209

  95. Wang Z, Liu Z, Ma T (2022) Virtual reality interaction system for turbine blade assembly based on digital twin. Ship Eng 44(10):1–7. https://doi.org/10.13788/j.cnki.cbgc.2022.10.01

    Article  Google Scholar 

  96. Guo F, Xiao Q, Li H, Zheng L, Zhang S (2022) Construction and actualizing techniques on virtual assembly prototype for aeronautical thin-walled structure with on-site physical characteristics. Aeronaut Manuf Technol 65(18):24–34. https://doi.org/10.16080/j.issn1671-833x.2022.18.024

    Article  Google Scholar 

  97. Feng H, Wang H, Chang C, Yang J (2021) State perception of flexible production line based on digital twin. J Electron Meas Instrum 35(2):17–24. https://doi.org/10.13382/j.jemi.B2003540

    Article  Google Scholar 

  98. Zhang D, Leng J, Xie M, Yan H, Liu Q (2022) Digital twin enabled optimal reconfiguration of the semi-automatic electronic assembly line with frequent changeovers. Robot Comput Integr Manuf 77:1–13. https://doi.org/10.1016/j.rcim.2022.102343

    Article  Google Scholar 

  99. Corrado A, Polini W, Moroni G, Petrò S (2018) A variational model for 3D tolerance analysis with manufacturing signature and operating conditions. Assem Autom 38(1):10–19. https://doi.org/10.1108/AA-01-2017-006

    Article  Google Scholar 

  100. Zhao D, Wang G, Hui J, Hou W, Evans RD (2020) A precision analysis method for the kinematic assembly of complex products based on equivalence of deviation source. Assem Autom 20(3):447–460. https://doi.org/10.1108/AA-03-2019-0044

    Article  Google Scholar 

  101. Yi Y, Yan Y, Liu X, Ni Z, Feng J, Liu J (2021) Digital twin-based smart assembly process design and application framework for complex products and its case study. J Manuf Syst 58:94–107. https://doi.org/10.1016/j.jmsy.2020.04.013

    Article  Google Scholar 

  102. Liu L, Xu Z, Gao C, Zhang T, Gao Z (2022) Digital twin-driven rear axle assembly torque prediction and online control. Sensors 22(19):7282. https://doi.org/10.3390/s22197282

    Article  Google Scholar 

  103. Sun XM, Bao J, Li J, Zhang YM, Liu S, Zhou B (2020) A digital twin-driven approach for the assembly-commissioning of high precision products. Robot Comput Integr Manuf 61:1–14. https://doi.org/10.1016/j.rcim.2019.101839

    Article  Google Scholar 

  104. Sun X, Liu S, Bao J, Li J, Liu Z (2022) A performance prediction method for a high-precision servo valve supported by digital twin assembly-commissioning. Machines 10(1):1–21. https://doi.org/10.3390/machines10010011

    Article  Google Scholar 

  105. Zhang Y, Huang J, Liu X, Ni Z (2021) Digital twin-based process optimization system research for micro-assembly products. 2021 Int Conf Comput, Control Robot (ICCCR). IEEE 133-137. https://doi.org/10.1109/ICCCR49711.2021.9349272

  106. Zhang J, Liu J, Gong K, Zhang C, Zhuang C, Zhao B (2021) Spacecraft assembly quality control and prediction technology based on digital twin. Comput Integr Manuf Syst 27(2):605–616. https://doi.org/10.13196/j.cims.2021.02.025

    Article  Google Scholar 

  107. Hu X, Liu J, Zhuang C, Wu Y, Zhang L, Xiong H (2021) Digital twin-based management method and application for the complex products assembly process. Comput Integr Manuf Syst 27(2):642–653. https://doi.org/10.13196/j.cims.2021.02.028

    Article  Google Scholar 

  108. Barbero BR, Aragón AC, Pedrosa CM (2015) Validation of a tolerance analysis simulation procedure in assemblies. Int J Adv Manuf Technol 76(5-8):1297–1310. https://doi.org/10.1007/s00170-014-6229-1

    Article  Google Scholar 

  109. Wu Y (2020) An automated method for assembly tolerance analysis. Procedia CIRP 92:57–62. https://doi.org/10.1016/j.procir.2020.05.169

    Article  Google Scholar 

  110. Bilberg A, Malik AA (2019) Digital twin driven human–robot collaborative assembly. CIRP Ann 68(1):499–502. https://doi.org/10.1016/j.cirp.2019.04.011

    Article  Google Scholar 

  111. Guo X, Peng G, Meng Y (2022) A modified Q-learning algorithm for robot path planning in a digital twin assembly system. Int J Adv Manuf Technol 119:3951–3961. https://doi.org/10.1007/s00170-021-08597-9

    Article  Google Scholar 

  112. Liu S, Wang XV, Wang L (2022) Digital twin-enabled advance execution for human-robot collaborative assembly. CIRP Ann 71(1):25–28. https://doi.org/10.1016/j.cirp.2022.03.024

    Article  Google Scholar 

  113. Lorenzo R, Elisa N, Marco M (2022) Local digital twin-based control of a cobot-assisted assembly cell based on dispatching rules. IFAC PapersOnLine 55(2):372–377. https://doi.org/10.1016/j.ifacol.2022.04.222

    Article  Google Scholar 

  114. Rezaei Aderiani A, Wärmefjord K, Söderberg R, Lindkvist L (2019) Individualizing locator adjustments of assembly fixtures using a digital twin. J Comput Inf Sci Eng 19(4). https://doi.org/10.1115/1.4043529

  115. Manns M, Fischer K, Du H, Slusallek P, Alexopoulos K (2018) A new approach to plan manual assembly. Int J of Comput Integr Manuf 31(9):907–920. https://doi.org/10.1080/0951192X.2018.1466396

    Article  Google Scholar 

  116. Nikolakis N, Alexopoulos K, Xanthakis E, Chryssolouris G (2019) The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. Int J of Comput Integr Manuf 32(1):1–12. https://doi.org/10.1080/0951192X.2018.1529430

    Article  Google Scholar 

  117. Liu X, Zheng L, Wang Y, Yang W, Jiang Z, Wang B, Tao F, Li Y (2022) Human-centric collaborative assembly system for large-scale space deployable mechanism driven by Digital Twins and wearable AR devices. J Manuf Syst 65:720–742. https://doi.org/10.1016/j.jmsy.2022.11.007

    Article  Google Scholar 

  118. Yao B, Xu W, Shen T, Ye X, Tian S (2023) Digital twin-based multi-level task rescheduling for robotic assembly line. Sci Rep 13(1):1769. https://doi.org/10.1038/s41598-023-28630-z

    Article  Google Scholar 

  119. Wang Y, Feng J, Liu J, Liu X, Wang J (2022) Digital twin-based design and operation of human-robot collaborative assembly. IFAC PapersOnLine 55(2):295–300. https://doi.org/10.1016/j.ifacol.2022.04.209

    Article  Google Scholar 

  120. Bao JS, Zhang R, Li J, Lu Y, Peng T (2022) Digital-twin collaborative technology for human-robot-environment integration. J Mech Eng 58(18):103–115. https://doi.org/10.3901/JME.2022.18.103

    Article  Google Scholar 

  121. Xu J, Song X, Liu XP, Chen B, Yan H (2022) Modeling and system realization of assembly robot based on digital twin. J Syst Simul:1–11. https://doi.org/10.16182/j.issn1004731x.joss.22-0272

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51975168) and the Natural Science Foundation of Heilongjiang Province (Grant No. LH2020E090).

Author information

Authors and Affiliations

Authors

Contributions

Chen Tao has proposed the components and framework of the manuscript and written the manuscript. Li Chunhui has analyzed the present research status and written the manuscript. Xiao Hui has consulted relevant literature and drawn figures of the manuscript. Zhu Zhiheng has revised the manuscript and checked the latest literature. Wang Guangyue has reviewed the manuscript.

Corresponding author

Correspondence to Chen Tao.

Ethics declarations

Ethical approval

The research does not involve human participants or animals and the authors warrant that the paper fulfills the ethical standards of the journal.

Consent to participate

It is confirmed that all the authors are aware and satisfied of the authorship order and correspondence of the paper.

Consent for publication

All the authors are satisfied that the last revised version of the paper is published without any change.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Chunhui, L., Hui, X. et al. A review of digital twin intelligent assembly technology and application for complex mechanical products. Int J Adv Manuf Technol 127, 4013–4033 (2023). https://doi.org/10.1007/s00170-023-11823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11823-1

Keywords

Navigation