Skip to main content
Log in

A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Conformal cooling channels (CCCs) are employed to improve the cooling rate due to the equal distance from the mold surface. CCCs play a key role in mold injection productivity by enhancing heat transfer between the CCs and mold surface, which leads to shorter cooling time. As the cooling stage of the mold injection highly influences the quality and efficiency of production, the design of cooling channels (CCs) and thermally enhanced molds has recently received great attention. Furthermore, the shape and design of CCCs have particularly been studied extensively since these parameters indicate promising effects on the cooling performance. Moreover, new designs and novel material compositions are being proposed in order to improve the heat removal in injection molds. This paper reviews the various and significant types of the CCCs by classifying them into four major groups. An overview of advancements of CCCs and thermally enhanced molds are provided which considers simulations and numerical and experimental studies generally. Details are also given for new proposed designs that utilize different algorithms, optimization process, fabrication procedures, and optimization parameters in CCC design which is summarized. Generally speaking, studies show that conventional straight drilled CCs are expected to be substituted by CCCs due to their promising performance in diminishing the cycle time and shape deviations of forming plastic. The most common results of summarized literature demonstrate a shorter cycle time in CCC utilization in comparison to the conventional CCs. This is because injection molding process cycle time significantly relies on molded part cooling time. In addition, warpage and inconsistent volume shrinkage of the plastic parts is reduced considerably. Varied manufacturing methods are applied in CCC fabrication, with additive manufacturing being the dominant fabrication technique. Ultimately, the review concluded that shape, temperature distribution, and pressure drop are the key parameters for CCCs in mold injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CCC:

Conformal cooling channel

CC:

Cooling channel

DOE:

Design of experiment

DMD:

Direct metal deposition

DMT:

Direct metal tooling

CAE:

Computer-aided engineering

FEM:

Finite element method

RT:

Rapid tooling

RP:

Rapid prototyping

FEA:

Finite element analysis

SLM:

Selective laser melting

DMLS:

Direct metal laser-sintering

AMI:

Autodesk moldflow insight

MGSS:

Milled grooved square shape

AM:

Additive manufacturing

FGM:

Functionally graded material

TPMS:

Triply periodic minimal surface

LPBF:

Laser powder bed fusion

FFF:

Fused filament fabrication

FDM:

Fused deposition modeling

DMP:

Direct metal printing

AFM:

Abrasive flow machining

EDM:

Electrical discharge machining

RSM:

Response surface method

GSO:

Glowworm swarm optimization

GA:

Genetic algorithm

ANN:

Artificial neural network

PVB:

Polyvinyl butyral resin

References

  1. Chen Z, Turng LS (2005) A review of current developments in process and quality control for injection molding. Adv Polym Technol 24:165–182. https://doi.org/10.1002/ADV.20046

    Article  Google Scholar 

  2. Silva HM, Noversa JT, Fernandes L et al (2022) Design, simulation and optimization of conformal cooling channels in injection molds: a review. Int J Adv Manuf Technol 120:4291–4305. https://doi.org/10.1007/S00170-022-08693-4/FIGURES/12

    Article  Google Scholar 

  3. Saifullah A (2016) Conformal cooling and additive manufacturing for moulding. LAP Lambert Academic publishing, Language; English

  4. Lu CT, Chen GS, Tseng SC (2017) Effectiveness of conformal cooling for a V-shaped plate and its influence on warpage. Proc 2017 IEEE-International Conf Information, Commun Eng (IEEE-ICICE 2017) 2017:79–82. https://doi.org/10.1109/icice.2017.8479294

  5. Agazzi A, Sobotka V, Le Goff R et al (2010) A methodology for the design of effective cooling system in injection moulding. Int J Mater Form 3:13–16. https://doi.org/10.1007/S12289-010-0695-2

    Article  Google Scholar 

  6. Mohamed OA, Masood SH, Saifullah A (2013) A simulation study of conformal cooling channels in plastic injection molding. Int J Eng Res 2:344–348

    Google Scholar 

  7. Deepika S, Singraur (2021) Defect minimization of an injection molded plastic component using conformal cooling channels. Mater Sci Forum 1019 MSF:205–210. https://doi.org/10.4028/www.scientific.net/MSF.1019.205

  8. Torres-Alba A, Mercado-Colmenero JM, Garcia-Ruiz NM et al (2023) Design of new conformal cooling channels for injection molded parts with complex undercuts and internal mold lifters. 365–381. https://doi.org/10.1007/978-3-031-20325-1_29

  9. Hu P, He B, Ying L (2016) Numerical investigation on cooling performance of hot stamping tool with various channel designs. Appl Therm Eng 96:338–351. https://doi.org/10.1016/j.applthermaleng.2015.10.154

    Article  Google Scholar 

  10. Liew KF, Peng HS, Jou TM, Wang CC (2018) Investigation on the establishment and analyses of conformal cooling channel design for blow mold. Proc 4th IEEE Int Conf Appl Syst Innov 2018. ICASI 2018:1236–1239. https://doi.org/10.1109/icasi.2018.8394514

    Article  Google Scholar 

  11. Hussain BI, Safiulla M, Brahmaiah M (2017) Study on temperature distribution to enhance the mould cooling method used in vacuum forming applications. Key Eng Mater 740:86–92. https://doi.org/10.4028/www.scientific.net/kem.740.86

    Article  Google Scholar 

  12. Kurtulus K, Bolatturk A, Coskun A, Gürel B (2021) An experimental investigation of the cooling and heating performance of a gravity die casting mold with conformal cooling channels. Appl Therm Eng 194:117105. https://doi.org/10.1016/j.applthermaleng.2021.117105

    Article  Google Scholar 

  13. Pelaccia R, Negozio M, Donati L et al (2020) Efficiency of conformal cooling channels inserts for extrusion dies. Procedia Manuf 47:209–216. https://doi.org/10.1016/j.promfg.2020.04.181

    Article  Google Scholar 

  14. Febriantoko BW, Darmawan AS, Masyrukan, Hamid A (2019) Post shrinkage comparison of plastic injection products by using solid mold, laminated steel tooling mold, and soft tooling mold. AIP Conf Proc 2114. https://doi.org/10.1063/1.5112413

  15. Park SJ, Kwon TH (1998) Optimal cooling system design for the injection molding process. Polym Eng Sci 38:1450–1462. https://doi.org/10.1002/pen.10316

    Article  Google Scholar 

  16. Lam YC, Zhai LY, Tai K, Fok SC (2004) An evolutionary approach for cooling system optimization in plastic injection moulding. Int J Prod Res 42:2047–2061. https://doi.org/10.1080/00207540310001622412

    Article  Google Scholar 

  17. Jahan S, El-Mounayri H, Tovar A, Shin YC (2019) A framework for estimating mold performance using experimental and numerical analysis of injection mold tooling prototypes. Conf Proc Soc Exp Mech Ser 71–76. https://doi.org/10.1007/978-3-319-95083-9_13

  18. Wang Y, Yu K-M, Wang CCL (2015) Spiral and conformal cooling in plastic injection molding. Comput Des 63:1–11. https://doi.org/10.1016/j.cad.2014.11.012

    Article  Google Scholar 

  19. Wang J, Xuan J, Ni Y (2023) Automatic design of conformal cooling channels of injection mold based on lotus root model. Int J Adv Manuf Technol 125:1879–1892. https://doi.org/10.1007/S00170-022-10714-1/TABLES/2

    Article  Google Scholar 

  20. Wang Y, Yu K-M, Wang CCL, Zhang Y (2011) Automatic design of conformal cooling circuits for rapid tooling. Comput Des 43:1001–1010. https://doi.org/10.1016/j.cad.2011.04.011

    Article  Google Scholar 

  21. Au KM, Yu KM, Chiu WK (2011) Visibility-based conformal cooling channel generation for rapid tooling. Comput Des 43:356–373. https://doi.org/10.1016/j.cad.2011.01.001

    Article  Google Scholar 

  22. Dobransky J, Botko F, Vojnova E (2016) Heat transfer monitoring of injection mold. MM Sci J 2016:1073–1076. https://doi.org/10.17973/mmsj.2016_10_201642

    Article  Google Scholar 

  23. Jahan SA, Wu T, Zhang Y et al (2016) Implementation of conformal cooling & topology optimization in 3D printed stainless steel porous structure injection molds. Procedia Manuf 5:901–915. https://doi.org/10.1016/j.promfg.2016.08.077

    Article  Google Scholar 

  24. Han S, Salvatore F, Rech J, Bajolet J (2020) Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng 64:20–33. https://doi.org/10.1016/j.precisioneng.2020.03.006

    Article  Google Scholar 

  25. Kirchheim A, Katrodiya Y, Zumofen L et al (2021) Dynamic conformal cooling improves injection molding: hybrid molds manufactured by laser powder bed fusion. Int J Adv Manuf Technol 114:107–116. https://doi.org/10.1007/s00170-021-06794-0

    Article  Google Scholar 

  26. Evens T, Six W, De Keyzer J et al (2019) Experimental analysis of conformal cooling in SLM produced injection moulds: effects on process and product quality. AIP Conf Proc 2055. https://doi.org/10.1063/1.5084861

  27. Kuo CC, Qiu SX, Lee GY et al (2021) Characterizations of polymer injection molding tools with conformal cooling channels fabricated by direct and indirect rapid tooling technologies. Int J Adv Manuf Technol 117:343–360. https://doi.org/10.1007/s00170-021-07778-w

    Article  Google Scholar 

  28. Kuo CC, You ZY, Chang SJ et al (2020) Development of green conformal cooling channels for rapid tooling. Int J Adv Manuf Technol 111:109–125. https://doi.org/10.1007/s00170-020-06115-x

    Article  Google Scholar 

  29. Kuo CC, Nguyen TD, Zhu YJ, Lin SX (2021) Rapid development of an injection mold with high cooling performance using molding simulation and rapid tooling technology. Micromachines 12:311. https://doi.org/10.3390/mi12030311

    Article  Google Scholar 

  30. Altaf K, Rani AMA, Raghavan VR (2011) Fabrication of circular and profiled conformal cooling channels in aluminum filled epoxy injection mould tools. 2011 Natl Postgrad Conf - Energy Sustain Explor Innov Minds, NPC 2011. https://doi.org/10.1109/natpc.2011.6136406

  31. Kuo CC, Wu JQ (2021) Development of a low-cost epoxy resin mold with high cooling efficiency. Int J Adv Manuf Technol 113:2065–2086. https://doi.org/10.1007/S00170-021-06716-0

    Article  Google Scholar 

  32. Kuo CC, Chen WH, Liu XZ et al (2017) Development of a low-cost wax injection mold with high cooling efficiency. Int J Adv Manuf Technol 93:2081–2088. https://doi.org/10.1007/S00170-017-0596-3

    Article  Google Scholar 

  33. Fekete I, Ibriksz I, Kovács T et al (2018) Surface modification and wear properties of direct metal laser sintered hybrid tools used in moulds. J Mech Eng 64:121–129. https://doi.org/10.5545/sv-jme.2017.4942

    Article  Google Scholar 

  34. Hölker R, Tekkaya AE (2016) Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels. Int J Adv Manuf Technol 83:1209–1220. https://doi.org/10.1007/S00170-015-7647-4

    Article  Google Scholar 

  35. Hölker R, Haase M, Ben Khalifa N, Tekkaya AE (2015) Hot extrusion dies with conformal cooling channels produced by additive manufacturing. Mater Today Proc 2:4838–4846. https://doi.org/10.1016/j.matpr.2015.10.028

    Article  Google Scholar 

  36. Muvunzi R, Dimitrov DM, Matope S, Harms T (2021) A case study on the design of a hot stamping tool with conformal cooling channels. Int J Adv Manuf Technol 114:1833–1846. https://doi.org/10.1007/S00170-021-06973-Z

    Article  Google Scholar 

  37. Hölker R, Jäger A, Ben Khalifa N (2013) Tekkaya AE (2013) Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels. Int J Precis Eng Manuf 148(14):1487–1493. https://doi.org/10.1007/S12541-013-0200-1

    Article  Google Scholar 

  38. Armillotta A, Baraggi R, Fasoli S (2014) SLM tooling for die casting with conformal cooling channels. Int J Adv Manuf Technol 71:573–583. https://doi.org/10.1007/s00170-013-5523-7

    Article  Google Scholar 

  39. Saifullah A, Masood S, Nikzad M, Brandt M (2016) An investigation on fabrication of conformal cooling channel with direct metal deposition for injection moulding. https://doi.org/10.1016/B978-0-12-803581-8.04023-6

  40. Wang L, Wei Q, Xue P, Shi Y (2012) Fabricate mould insert with conformal cooling channel using selective laser melting. Adv Mater Res 502:67–71. https://doi.org/10.4028/www.scientific.net/amr.502.67

    Article  Google Scholar 

  41. Kanbur BB, Zhou Y, Shen S et al (2022) Metal additive manufacturing of plastic injection molds with conformal cooling channels. Polymers (Basel) 14:424. https://doi.org/10.3390/polym14030424

    Article  Google Scholar 

  42. Rodriguez ER, Tardif X, Bailleul JL et al (2021) Thermal design methodology to hybrid manufacturing process of high performance thermoplastics composites. ESAFORM 2021 - 24th Int Conf Mater Form. https://doi.org/10.25518/esaform21.3677

  43. Davis W, Lunetto V, Priarone PC et al (2020) An appraisal on the sustainability payback of additively manufactured molds with conformal cooling. Procedia CIRP 90:516–521. https://doi.org/10.1016/j.procir.2020.01.064

    Article  Google Scholar 

  44. Bolatturk A, Ipek O, Kurtulus K, Kan M (2019) Design of conformal cooling channels by numerical methods in a metal mold and calculation of exergy destruction in channels. Sci Iran 26:3255–3261. https://doi.org/10.24200/sci.2018.50090.1502

    Article  Google Scholar 

  45. Singh D, Joshi K, Patil B (2021) Comparative economic analysis of injection-moulded component with conventional and conformal cooling channels. J Inst Eng Ser C. https://doi.org/10.1007/S40032-021-00778-5

    Article  Google Scholar 

  46. Shayfull Z, Sharif S, Zain AM et al (2014) Potential of conformal cooling channels in rapid heat cycle molding: a review. Adv Polym Technol 33. https://doi.org/10.1002/adv.21381

  47. Shinde MS, Ashtankar KM (2017) Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Adv Mech Eng 9:1–14. https://doi.org/10.1177/1687814017699764

    Article  Google Scholar 

  48. Phull GS, Kumar S, Walia RS (2018) Conformal cooling for molds produced by additive manufacturing: a review. Int J Mech Eng Technol 9:1162–1172

    Google Scholar 

  49. Singh SD (2019) Advancements in design and fabrication of conformal cooling channels for improvement in plastic injection molding process. Ind Eng J 12:1–6. https://doi.org/10.26488/iej.12.5.1171

    Article  Google Scholar 

  50. Kanbur BB, Suping S, Duan F (2020) Design and optimization of conformal cooling channels for injection molding: a review. Int J Adv Manuf Technol 106:3253–3271. https://doi.org/10.1007/s00170-019-04697-9

    Article  Google Scholar 

  51. Wei Z, Wu J, Shi N, Li L (2020) Review of conformal cooling system design and additive manufacturing for injection molds. Math Biosci Eng 17:5414–5431. https://doi.org/10.3934/mbe.2020292

    Article  MATH  Google Scholar 

  52. Feng S, Kamat AM, Pei Y (2021) Design and fabrication of conformal cooling channels in molds: review and progress updates. Int J Heat Mass Transf 171:121082. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082

    Article  Google Scholar 

  53. Ahn DG (2011) (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools — state of the art. Int J Precis Eng Manuf 125(12):925–938. https://doi.org/10.1007/S12541-011-0125-5

    Article  Google Scholar 

  54. Shinde MS, Ashtankar KM, Kuthe AM et al (2018) Direct rapid manufacturing of molds with conformal cooling channels. Rapid Prototyp J 24:1347–1364. https://doi.org/10.1108/rpj-12-2016-0199

    Article  Google Scholar 

  55. Díez-Barcenilla G, Gómez-Alonso JL, Gondra K, Zuza E (2021) Epoxy tooling: technologies, developments, sustainability and future interest to industry 4.0. Polym Polym Compos 29:S1649–S1663. https://doi.org/10.1177/09673911211059880

    Article  Google Scholar 

  56. Scopus - Analyze search results | Signed in n.d. https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=095426caac7a61f4906619cdedc9db22&sot=a&sdt=a&cluster=scolang%2c%22English%22%2ct&sl=198&s=%28TITLE-ABS-KEY%28%22conformal+cooling+channels%22+OR+%22conformal+cooling%22+OR+%22conformal+cooling+channel%22%29+AND+TITLE-ABS-KEY%28%22injection+molds%22+OR+%22injection+moldings%22%29%29+AND+PUBYEAR+%3e+1994+AND+PUBYEAR+%3c+2023&origin=resultslist&count=10&analyzeResults=Analyze+results. Accessed 9 Mar 2023

  57. Scopus - Document search results | Signed in n.d. https://www.scopus.com/results/results.uri?sort=plff&src=s&st1=%22conformal+cooling+channels%22+OR+%22conformal+cooling%22+OR+%22conformal+cooling+channel%22&st2=%22injection+molds%22+OR+%22injection+moldings%22&sid=095426caac7a61f4906619cdedc9db22&KEY%28%22conformal+cooling+channels%22+OR+%22conformal+cooling%22+OR+%22conformal+cooling+channel%22%29+AND+TITLE-ABSKEY%28%22injection+molds%22+OR+%22injection+moldings%22%29%29&origin=resultslist&editSaveSearch=&yearFrom=1995&yearTo=2022&sessionSearchId=095426caac7a61f4906619cdedc9db22&. Accessed 9 Mar 2023

  58. Papadakis L, Avraam S, Photiou D et al (2020) Use of a holistic design and manufacturing approach to implement optimized additively manufactured mould inserts for the production of injection-moulded thermoplastics. J Manuf Mater Process 4:100. https://doi.org/10.3390/jmmp4040100

    Article  Google Scholar 

  59. Kovács JG, Szabó F, Kovács NK et al (2015) Thermal simulations and measurements for rapid tool inserts in injection molding applications. Appl Therm Eng 85:44–51. https://doi.org/10.1016/j.applthermaleng.2015.03.075

    Article  Google Scholar 

  60. Dimla E (2015) Design considerations of conformal cooling channels in injection moulding tools design: an overview. Journal of Thermal Engineering, Special Issue 2 Energy Systems and Developments 2015 ICESD 2015 India. pp 627–635. Retrieved from https://dergipark.org.tr/en/pub/thermal/issue/21336/228903

  61. Martinsen K, Gellein LT, Boivie KM (2017) Sensors embedded in surface coatings in injection moulding dies. Procedia CIRP 62:386–390. https://doi.org/10.1016/j.procir.2016.06.048

    Article  Google Scholar 

  62. Zink B, Kovács JG (2017) The effect of limescale on heat transfer in injection molding. Int Commun Heat Mass Transf 86:101–107. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.018

    Article  Google Scholar 

  63. Marhöfer DM, Tosello G, Islam A, Hansen HN (2015) Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling. Proc 15th Int Conf Eur Soc Precis Eng Nanotechnology. EUSPEN 2015:65–66

    Google Scholar 

  64. Kuo CC, Hsu HJ (2013) Development and application of hybrid mold with microfeatures in micro-hot embossing. Mater Manuf Process 28:1203–1208. https://doi.org/10.1080/10426914.2013.832305

    Article  Google Scholar 

  65. Muvunzi R, Hagedorn-Hansen D, Matope S et al (2020) Industry case study: process chain for manufacturing of a large hybrid hot stamping tool with conformal cooling channels. Int J Adv Manuf Technol 110:1723–1730. https://doi.org/10.1007/s00170-020-05992-6

    Article  Google Scholar 

  66. Zheng K, Tong C, Li Y et al (2020) An experimental and numerical study of feasibility of a novel technology to manufacture hot stamping dies with pre-constructed tube network. Int J Adv Manuf Technol 111:2919–2937. https://doi.org/10.1007/S00170-020-06280-Z

    Article  Google Scholar 

  67. Pujante J, González B, Garcia-Llamas E (2021) Pilot demonstration of hot sheet metal forming using 3D printed dies. Materials (Basel) 14:5695. https://doi.org/10.3390/ma14195695

    Article  Google Scholar 

  68. Gemici Z (2018) Development of a cooling die used in plastic pipe processing: numerical and experimental analysis. J Therm Eng 4:2096–2116. https://doi.org/10.18186/journal-of-thermal-engineering.415298

    Article  Google Scholar 

  69. Soete K, Desplentere F (2019) Simulation of the effects of using conformal cooling channels in SLM produced plastic extrusion calibrators. AIP Conf Proc 2055. https://doi.org/10.1063/1.5084863

  70. Pelaccia R, Negozio M, Donati L et al (2022) Extrusion of light and ultralight alloys with liquid nitrogen conformal cooled dies: process analysis and simulation. J Mater Eng Perform 31:1991–2001. https://doi.org/10.1007/S11665-021-06320-Z

    Article  Google Scholar 

  71. Reggiani B, Todaro I (2019) Investigation on the design of a novel selective laser melted insert for extrusion dies with conformal cooling channels. Int J Adv Manuf Technol 104:815–830. https://doi.org/10.1007/S00170-019-03879-9

    Article  Google Scholar 

  72. Shu L, Zhang Z, Ren Z, Zhang T (2021) Design and simulation of conformal cooling for a die-casting mold insert. J Phys Conf Ser 1939. https://doi.org/10.1088/1742-6596/1939/1/012002

  73. Marques S, de Souza AF, Miranda J, Yadroitsau I (2015) Design of conformal cooling for plastic injection moulding by heat transfer simulation. Polímeros 25:564–574. https://doi.org/10.1590/0104-1428.2047

    Article  Google Scholar 

  74. Wu T, Jahan SA, Kumaar P et al (2015) A framework for optimizing the design of injection molds with conformal cooling for additive manufacturing. Procedia Manuf 1:404–415. https://doi.org/10.1016/j.promfg.2015.09.049

    Article  Google Scholar 

  75. Jahan SA, El-Mounayri H (2016) Optimal conformal cooling channels in 3D printed dies for plastic injection molding. Procedia Manuf 5:888–900. https://doi.org/10.1016/j.promfg.2016.08.076

    Article  Google Scholar 

  76. Brooks H, Brigden K (2016) Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit Manuf 11:16–22. https://doi.org/10.1016/j.addma.2016.03.004

    Article  Google Scholar 

  77. He B, Ying L, Li X, Hu P (2016) Optimal design of longitudinal conformal cooling channels in hot stamping tools. Appl Therm Eng 106:1176–1189. https://doi.org/10.1016/j.applthermaleng.2016.06.113

    Article  Google Scholar 

  78. Jahan S, Wu T, Shin Y et al (2019) Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3D printed plastic injection molds. Procedia Manuf 34:631–639. https://doi.org/10.1016/j.promfg.2019.06.120

    Article  Google Scholar 

  79. Běhálek L, Dobránsky J (2013) Conformal cooling of the injection moulds. Appl Mech Mater 308:127–132. https://doi.org/10.4028/www.scentific.net/amm.308.127

    Article  Google Scholar 

  80. Vojnová E (2016) The benefits of a conforming cooling systems the molds in injection moulding process. Procedia Eng 149:535–543. https://doi.org/10.1016/j.proeng.2016.06.702

    Article  Google Scholar 

  81. Zhang Y, Hou B, Wang Q et al (2018) Automatic design of conformal cooling channels in injection molding tooling. IOP Conf Ser Mater Sci Eng 307:012025. https://doi.org/10.1088/1757-899X/307/1/012025

    Article  Google Scholar 

  82. Kuo CC, You ZY (2018) Development of injection molding tooling with conformal cooling channels fabricated by optimal process parameters. Int J Adv Manuf Technol 96:1003–1013. https://doi.org/10.1007/s00170-018-1664-z

    Article  Google Scholar 

  83. Kuo CC, You ZY (2018) A cost-effective approach for rapid fabricating cooling channels with smooth surface. Int J Adv Manuf Technol 95:1135–1141. https://doi.org/10.1007/s00170-017-1328-4

    Article  Google Scholar 

  84. Hussain BI, Safiulla M (2018) Comparative study of cooling systems for vacuum forming tool. Mater Today Proc 5:30–36. https://doi.org/10.1016/j.matpr.2017.11.049

    Article  Google Scholar 

  85. Kuo CC, You ZY, Wu JY, Huang JL (2019) Development and application of a conformal cooling channel with easy removal and smooth surfaces. Int J Adv Manuf Technol 102:2029–2039. https://doi.org/10.1007/s00170-019-03316-x

    Article  Google Scholar 

  86. Shen S, Kanbur BB, Zhou Y, Duan F (2020) Thermal and mechanical analysis for conformal cooling channel in plastic injection molding. Mater Today Proc 28:396–401. https://doi.org/10.1016/j.matpr.2019.10.020

    Article  Google Scholar 

  87. Kanbur BB, Shen S, Zhou Y, Duan F (2020) Thermal and mechanical simulations of the lattice structures in the conformal cooling cavities for 3D printed injection molds. Mater Today Proc 28:379–383. https://doi.org/10.1016/j.matpr.2019.10.017

    Article  Google Scholar 

  88. Mercado-Colmenero JM, Rubio-Paramio MA, de Juanes Marquez-Sevillano J, Martin-Doñate C (2018) A new method for the automated design of cooling systems in injection molds. Comput Des 104:60–86. https://doi.org/10.1016/j.cad.2018.06.001

    Article  Google Scholar 

  89. Chinchkhede P, Ashtankar KM (2016) Determining appropriate cooling system for plastic injection molding through computer simulation. Int J Eng Technol 03:846–853

    Google Scholar 

  90. Arrizubieta JI, Cortina M, Ostolaza M et al (2019) Case study: modeling of the cycle time reduction in a B-Pillar hot stamping operation using conformal cooling. Procedia Manuf 41:50–57. https://doi.org/10.1016/j.promfg.2019.07.028

    Article  Google Scholar 

  91. Minh PS, Dang H-S, Ha NC (2023) Optimization of 3D cooling channels in plastic injection molds by Taguchi-integrated principal component analysis (PCA). Polymers (Basel) 15:1080. https://doi.org/10.3390/polym15051080

    Article  Google Scholar 

  92. Wu T, Tovar A (2018) Design for additive manufacturing of conformal cooling channels using thermal-fluid topology optimization and application in injection molds. Proc ASME Des Eng Tech Conf 2B–2018:1–12. https://doi.org/10.1115/detc201885511

    Article  Google Scholar 

  93. Kambampati S, Kim HA (2020) Level set topology optimization of cooling channels using the Darcy flow model. Struct Multidiscip Optim 61:1345–1361. https://doi.org/10.1007/S00158-019-02482-6

    Article  MathSciNet  Google Scholar 

  94. Liang Wang M, Jun Zheng L, Bae S, Wook Kang H (2023) Comprehensive performance enhancement of conformal cooling process using thermal-load-based topology optimization. Appl Therm Eng 120332. https://doi.org/10.1016/J.APPLTHERMALENG.2023.120332

  95. Kitayama S, Miyakawa H, Takano M, Aiba S (2017) Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int J Adv Manuf Technol 88:1735–1744. https://doi.org/10.1007/s00170-016-8904-x

    Article  Google Scholar 

  96. Martowibowo SY, Kaswadi A (2017) Optimization and simulation of plastic injection process using genetic algorithm and moldflow. Chin J Mech Eng Engl Ed 30:398–406. https://doi.org/10.1007/s10033-017-0081-9

    Article  Google Scholar 

  97. Kanbur BB, Shen S, Zhou Y, Duan F (2020) Neural network-integrated multiobjective optimization of the 3D-printed conformal cooling channels. 2020 5th Int Conf Smart Sustain Technol 1–6. https://doi.org/10.23919/SpliTech49282.2020.9243730

  98. Feng QQ, Liu L, Zhou X (2020) Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA. Int J Adv Manuf Technol 106:559–575. https://doi.org/10.1007/s00170-019-04488-2

    Article  Google Scholar 

  99. Mohd Hanid MH, Abd Rahim SZ, Gondro J et al (2021) Warpage optimisation on the moulded part with straight drilled and conformal cooling channels using response surface methodology (RSM), glowworm swarm optimisation (GSO) and genetic algorithm (GA) optimisation approaches. Materials (Basel) 14:1326. https://doi.org/10.3390/ma14061326

    Article  Google Scholar 

  100. Lin JC (2002) Optimum cooling system design of a free-form injection mold using an abductive network. J Mater Process Technol 120:226–236. https://doi.org/10.1016/S0924-0136(01)01193-1

    Article  Google Scholar 

  101. Gao Z, Sossou D, Zhao YF (2020) Machine learning aided design and optimization of conformal porous structures. Proc ASME Des Eng Tech Conf 9:1–9. https://doi.org/10.1115/detc2020-22150

    Article  Google Scholar 

  102. Gao Z, Dong G, Tang Y, Zhao YF (2021) Machine learning aided design of conformal cooling channels for injection molding. J Intell Manuf 1–19. https://doi.org/10.1007/s10845-021-01841-9

  103. He B, Si Y, Ying L, Hu P (2016) Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization. MATEC Web Conf 80. https://doi.org/10.1051/matecconf/20168010001

  104. Ahn DG, Park SH, Kim HS (2010) Manufacture of an injection mould with rapid and uniform cooling characteristics for the fan parts using a DMT process. Int J Precis Eng Manuf 11:915–924. https://doi.org/10.1007/S12541-010-0111-3

    Article  Google Scholar 

  105. Park HS, Dang XP (2010) Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int J Precis Eng Manuf 11:879–890. https://doi.org/10.1007/S12541-010-0107-Z

    Article  Google Scholar 

  106. Dang XP, Park HS (2011) Design of u-shape milled groove conformal cooling channels for plastic injection mold. Int J Precis Eng Manuf 12:73–84. https://doi.org/10.1007/S12541-011-0009-8

    Article  Google Scholar 

  107. Hölker R, Jäger A, Ben Khalifa N, Tekkaya AE (2013) Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels. Int J Precis Eng Manuf 14:1487–1493. https://doi.org/10.1007/s12541-013-0200-1

    Article  Google Scholar 

  108. Hsu FH, Wang K, Huang CT, Chang RY (2013) Investigation on conformal cooling system design in injection molding. Adv Prod Eng Manag 8:107–115. https://doi.org/10.14743/apem2013.2.158

    Article  Google Scholar 

  109. Shayfull Z, Sharif S, Zain AM et al (2013) Milled groove square shape conformal cooling channels in injection molding process. Mater Manuf Process 28:884–891. https://doi.org/10.1080/10426914.2013.763968

    Article  Google Scholar 

  110. Au KM, Yu KM (2013) Conformal cooling channel design and CAE simulation for rapid blow mould. Int J Adv Manuf Technol 66:311–324. https://doi.org/10.1007/s00170-012-4326-6

    Article  Google Scholar 

  111. Gao GQ, Liu YS, Cai YJ (2014) Analysis and manufacturing of conformal cooling channels in injection mold. Appl Mech Mater 651–653:630–633. https://doi.org/10.4028/www.scientific.net/amm.651-653.630

    Article  Google Scholar 

  112. Eiamsa-Ard K, Wannissorn K (2015) Conformal bubbler cooling for molds by metal deposition process. Comput Des 69:126–133. https://doi.org/10.1016/j.cad.2015.04.004

    Article  Google Scholar 

  113. Rahim SZA, Sharif S, Zain AM et al (2016) Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process. Adv Polym Technol 35. https://doi.org/10.1002/adv.21524

  114. Park HS, Dang XP (2017) Development of a smart plastic injection mold with conformal cooling channels. Procedia Manuf 10:48–59. https://doi.org/10.1016/j.promfg.2017.07.020

    Article  Google Scholar 

  115. Kuo CC, Chen WH, Zhang JW et al (2017) A new method of manufacturing a rapid tooling with different cross-sectional cooling channels. Int J Adv Manuf Technol 92:3481–3487. https://doi.org/10.1007/S00170-017-0423-X

    Article  Google Scholar 

  116. Lin YF, Wu JR, Liu BH et al (2017) Improved contact lens injection molding production by 3D printed conformal cooling channels. Proc 2017 IEEE/SICE Int Symp Syst Integr 2017:89–94. https://doi.org/10.1109/SII.2017.8279194

  117. Liu C, Cai Z, Dai Y et al (2018) Experimental comparison of the flow rate and cooling performance of internal cooling channels fabricated via selective laser melting and conventional drilling process. Int J Adv Manuf Technol 96:2757–2767. https://doi.org/10.1007/S00170-018-1799-Y

    Article  Google Scholar 

  118. Kitayama S, Tamada K, Takano M, Aiba S (2018) Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel. J Manuf Process 32:782–790. https://doi.org/10.1016/j.jmapro.2018.04.007

    Article  Google Scholar 

  119. Kuo CC, Zhu YJ, Wu YZ, You ZY (2019) Development and application of a large injection mold with conformal cooling channels. Int J Adv Manuf Technol 103:689–701. https://doi.org/10.1007/S00170-019-03614-4

    Article  Google Scholar 

  120. Kuo CC, Jiang ZF, Lee JH (2019) Effects of cooling time of molded parts on rapid injection molds with different layouts and surface roughness of conformal cooling channels. Int J Adv Manuf Technol 103:2169–2182. https://doi.org/10.1007/S00170-019-03694-2

    Article  Google Scholar 

  121. Torres-Alba A, Mercado-Colmenero JM, Diaz-Perete D, Martin-Doñate C (2020) A new conformal cooling design procedure for injection molding based on temperature clusters and multidimensional discrete models. Polymers 12(1):154. https://doi.org/10.3390/polym12010154

  122. Tan C, Wang D, Ma W et al (2020) Design and additive manufacturing of novel conformal cooling molds. Mater Des 196:109147. https://doi.org/10.1016/j.matdes.2020.109147

    Article  Google Scholar 

  123. Torres-Alba A, Mercado-Colmenero JM, de Dios Caballero-Garcia J, Martin-Doñate C (2021) Application of new triple hook-shaped conformal cooling channels for cores and sliders in injection molding to reduce residual stress and warping in complex plastic optical parts. Polymers (Basel) 13:2944. https://doi.org/10.3390/polym13172944

    Article  Google Scholar 

  124. Kuo CC, Chen WH (2021) Improving cooling performance of injection molding tool with conformal cooling channel by adding hybrid fillers. Polymers (Basel) 13:1224. https://doi.org/10.3390/polym13081224

    Article  Google Scholar 

  125. Oh SH, Ha JW, Park K (2022) Adaptive conformal cooling of injection molds using additively manufactured TPMS structures. Polymers (Basel) 14:181. https://doi.org/10.3390/polym14010181

    Article  Google Scholar 

  126. Kuo C-C, Xu J-Y, Zhu Y-J, Lee C-H (2022) Effects of different mold materials and coolant media on the cooling performance of epoxy- based injection molds. Polymers (Basel) 14:280. https://doi.org/10.3390/polym14020280

    Article  Google Scholar 

  127. Kuo C-C, Tasi Q-Z, Xie B-X et al (2022) Improving the quality of a circular cooling channel fabrication by fused filament fabrication using Taguchi methods. Int J Adv Manuf Technol 2022:1–12. https://doi.org/10.1007/S00170-022-08986-8

    Article  Google Scholar 

  128. Park HS, Pham NH (2009) Design of conformal cooling channels for an automotive part. Int J Autom Technol 10:87–93. https://doi.org/10.1007/s12239-009-0011-7

    Article  Google Scholar 

  129. Zheng Z, Zhang HO, Wang GL, Qian YP (2011) Finite element analysis on the injection molding and productivity of conformal cooling channel. J Shanghai Jiaotong Univ 16:231–235. https://doi.org/10.1007/s12204-011-1128-1

    Article  Google Scholar 

  130. Khosravani MR, Nasiri S, Reinicke T (2022) Intelligent knowledge-based system to improve injection molding process. J Ind Inf Integr 25:100275. https://doi.org/10.1016/J.JII.2021.100275

    Article  Google Scholar 

  131. Jauregui-Becker JM, Tragter H, van Houten FJAM (2009) Toward a bottom-up approach to automate the design of cooling systems for injection molding. Comput Aided Des Appl 6:447–459. https://doi.org/10.3722/cadaps.2009.447-459

    Article  Google Scholar 

  132. Zhao Y, Mattner T, Drummer D (2019) Investigation of the effects of pre-cross-linked thermoset molding compounds on weld line strength in injection molding. Int J Adv Manuf Technol 105:1723–1733. https://doi.org/10.1007/s00170-019-04306-9

    Article  Google Scholar 

  133. Mercado-Colmenero JM, Rubio-Paramio MA, Vizan-Idoipe A, Martin-Doñate C (2017) A new procedure for the automated design of ejection systems in injection molds. Robot Comput Integr Manuf 46:68–85. https://doi.org/10.1016/j.rcim.2016.12.006

    Article  Google Scholar 

  134. Mercado-Colmenero JM, Rubio-Paramio MA, Karlinger P, Martin-Doñate C (2018) A new procedure for calculating cycle time in injection molding based on plastic part geometry recognition. Int J Adv Manuf Technol 98:441–477. https://doi.org/10.1007/s00170-018-2080-0

    Article  Google Scholar 

  135. Venkatesh G, Ravi Kumar Y, Raghavendra G (2017) Comparison of straight line to conformal cooling channel in injection molding. Mater Today Proc 4:1167–1173. https://doi.org/10.1016/j.matpr.2017.01.133

    Article  Google Scholar 

  136. Khan M, Afaq SK, Khan NU, Ahmad S (2014) Cycle time reduction in injection molding process by selection of robust cooling channel design. ISRN Mech Eng 2014. https://doi.org/10.1155/2014/968484

  137. Xu X, Sachs E, Allen S, Cima M (1998) Designing conformal cooling channels for tooling. 1998 International Solid Freeform Fabrication Symposium. pp 131–146. https://doi.org/10.26153/tsw/588

  138. Yoo S (2008) Design of conformal cooling/ heating channels for layered tooling. ICSMA 2008 - Int Conf Smart Manuf Appl 126–129. https://doi.org/10.1109/ICSMA.2008.4505626

  139. Au KM, Yu KM (2007) A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int J Adv Manuf Technol 34:496–515. https://doi.org/10.1007/s00170-006-0628-x

    Article  Google Scholar 

  140. Clemente MR, Oliveira Panão MR (2018) Introducing flow architecture in the design and optimization of mold inserts cooling systems. Int J Therm Sci 127:288–293. https://doi.org/10.1016/j.ijthermalsci.2018.01.035

    Article  Google Scholar 

  141. Marin F, de Miranda JR, de Souza AF (2018) Study of the design of cooling channels for polymers injection molds. Polym Eng Sci 58:552–559. https://doi.org/10.1002/pen.24769

    Article  Google Scholar 

  142. Torres-Alba A, Mercado-Colmenero JM, Caballero-Garcia JDD, Martin-Doñate C (2021) A hybrid cooling model based on the use of newly designed fluted conformal cooling channels and fastcool inserts for green molds. Polymers (Basel) 13:3115. https://doi.org/10.3390/polym13183115

    Article  Google Scholar 

  143. Tuteski O, Kočov A (2018) Conformal cooling channels in injection molding tools – design considerations. Mach Technol Mater 12:445–448

    Google Scholar 

  144. Güldaş A, Göktaş M (2019) Comparson of straight, spiral conformal and zig-zag conformal cooling channels in plastic injection molds. Int Symp Innov Approaches Sci Stud (ISAS 2019). Ankara 4:395–399

    Google Scholar 

  145. Torres-Alba A, Diaz - Perete D, Martin-Doñate C, Mercado-Colmenero JM (2020) Conformal cooling systems design and dimensioning for injection molds. Lect Notes Mech Eng 166–174. https://doi.org/10.1007/978-3-030-41200-5_18/COVER/

  146. Poornima K, Ansari MNM (2013) Cooling channel design for multi-cavity plastic injection moulds. Int J Sci Res 2:2319–7064

    Google Scholar 

  147. Goktas M, Guldas A, Bayraktar O (2016) Cooling of plastic injection moulds using conformal cooling chanals. 3rd International Conference on Engineering and Natural Science (ICENS). Sarajevo, Bosnia, pp 2075–2081

  148. Berger GR, Zorn D, Friesenbichler W et al (2019) Efficient cooling of hot spots in injection molding. A biomimetic cooling channel versus a heat-conductive mold material and a heat conductive plastics. Polym Eng Sci 59:180–188. https://doi.org/10.1002/pen.25024

    Article  Google Scholar 

  149. Li Z, Wang X, Gu J et al (2018) Topology optimization for the design of conformal cooling system in thin-wall injection molding based on BEM. Int J Adv Manuf Technol 94:1041–1059. https://doi.org/10.1007/S00170-017-0901-1

    Article  Google Scholar 

  150. Tang Y, Gao Z, Zhao YF (2019) Design of conformal porous structures for the cooling system of an injection mold fabricated by additive manufacturing process. J Mech Des Trans ASME 141. https://doi.org/10.1115/1.4043680

  151. Au KM, Yu KM (2011) Modeling of multi-connected porous passageway for mould cooling. Comput Des 43:989–1000. https://doi.org/10.1016/J.cad.2011.02.007

    Article  Google Scholar 

  152. Choi JH, Kim JS, Han ES et al (2014) Study on an optimized configuration of conformal cooling channel by branching law. ASME 2014 12th Bienn Conf Eng Syst Des Anal ESDA 2014 1. https://doi.org/10.1115/esda2014-20431

  153. Luh Y-P, Chin C-C, Iao H-W (2023) Automated design of honeycomb conformal cooling channels for improving injection molding quality. Prod Eng Arch 29:44–57. https://doi.org/10.30657/pea.2023.29.7

    Article  Google Scholar 

  154. Agazzi A, Sobotka V, Legoff R, Jarny Y (2013) Optimal cooling design in injection moulding process-a new approach based on morphological surfaces. Appl Therm Eng 52:170–178. https://doi.org/10.1016/j.applthermaleng.2012.11.019

    Article  Google Scholar 

  155. Agazzi A, Sobotka V, Legoff R, Jarny Y (2013) Uniform cooling and part warpage reduction in injection molding thanks to the design of an effective cooling system. Key Eng Mater 554–557:1611–1618. https://doi.org/10.4028/www.scientific.net/kem.554-557.1611

    Article  Google Scholar 

  156. Legesse F, Kapil S, Vithasth H, Karunakaran KP (2018) Additive manufacturing of H13 tooling element with conformal cooling channel using MIG cladding. Int J Rapid Manuf 7:1. https://doi.org/10.1504/IJRAPIDM.2018.089725

    Article  Google Scholar 

  157. Jacobs PF (2021) New Frontiers in mold construction: high conductivity materials and conformal cooling channels. ASME Int Mech Eng Congr Expo Proc 2000–X:389–396. https://doi.org/10.1115/IMECE2000-1833

  158. Abbès B, Abbès F, Abdessalam H, Upganlawar A (2019) Finite element cooling simulations of conformal cooling hybrid injection molding tools manufactured by selective laser melting. Int J Adv Manuf Technol 103:2515–2522. https://doi.org/10.1007/S00170-019-03721-2

    Article  Google Scholar 

  159. Ferreira JC, Mateus A (2003) Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J Mater Process Technol 142:508–516. https://doi.org/10.1016/S0924-0136(03)00650-2

    Article  Google Scholar 

  160. Hatos I, Kocsis B, Hargitai H (2018) Conformal cooling with heat-conducting inserts by direct metal laser sintering. IOP Conf Ser Mater Sci Eng 448. https://doi.org/10.1088/1757-899X/448/1/012027

  161. Shin KH (2019) A method for representation and analysis of conformal cooling channels in molds made of functionally graded tool steel/Cu materials. J Mech Sci Technol 33:1743–1750. https://doi.org/10.1007/s12206-019-0326-x

    Article  Google Scholar 

  162. Beal VE, Erasenthiran P, Ahrens CH, Dickens P (2016) Evaluating the use of functionally graded materials inserts produced by selective laser melting on the injection moulding of plastics parts: 221:945–954. https://doi.org/10.1243/09544054JEM764

  163. Kuo CC, Chen WH, Lin YX et al (2020) Effects of different fillers on the silicone rubber mold with conformal cooling channels. Int J Adv Manuf Technol 108:1509–1525. https://doi.org/10.1007/s00170-020-05508-2

    Article  Google Scholar 

  164. Kapil S, Legesse F, Negi S et al (2020) Hybrid layered manufacturing of a bimetallic injection mold of P20 tool steel and mild steel with conformal cooling channels. Prog Addit Manuf 5:183–198. https://doi.org/10.1007/s40964-020-00129-3

    Article  Google Scholar 

  165. Polenz S, Kolbe C, Bittner F et al (2021) Integration of pure copper to optimize heat dissipation in injection mould inserts using laser metal deposition. J Laser Appl 33:012029. https://doi.org/10.2351/7.0000303

    Article  Google Scholar 

  166. Kelly AL, Mulvaney-Johnson L, Beechey R, Coates PD (2011) The effect of copper alloy mold tooling on the performance of the injection molding process. Polym Eng Sci 51:1837–1847. https://doi.org/10.1002/PEN.21975

    Article  Google Scholar 

  167. Zink B, Szabó F, Hatos I et al (2017) Enhanced injection molding simulation of advanced injection molds. Polymers (Basel) 9:77. https://doi.org/10.3390/polym9020077

    Article  Google Scholar 

  168. Ahn DG, Kim HW (2010) Study on the manufacture of a thermal management mould with three different materials using a direct metal tooling rapid tooling process. Proc Inst Mech Eng B J Eng Manuf 224:385–402. https://doi.org/10.1243/09544054jem1523

    Article  Google Scholar 

  169. Ahn DG, Kim HW, Lee KY (2009) Design of the thermally conductive mould to improve cooling characteristics of injection mould for a mouse. Trans Korean Soc Mech Eng A 33:201–209. https://doi.org/10.3795/KSME-A.2009.33.3.201

    Article  Google Scholar 

  170. Ahn DG, Kim HSHW, Park SH, Kim HSHW (2010) Manufacture of mould with a high energy efficiency using rapid manufacturing process. AIP Conf Proc 1252:185–191. https://doi.org/10.1063/1.3457549

    Article  Google Scholar 

  171. please consider to use aluminum material in your mold | Professional industrial design services, High value-added mold and High quality product suppliers. https://firstratemold.com/please-consider-to-use-aluminum-material-in-your-mold/. Accessed 24 Mar 2023

  172. Brøtan V, Berg OÅ, Sørby K (2016) Additive manufacturing for enhanced performance of molds. Procedia CIRP 54:186–190. https://doi.org/10.1016/j.procir.2016.05.074

    Article  Google Scholar 

  173. Wu T, Upadhyaya N, Acheson D, Tovar A (2017) Structural optimization of injection molds with lattice cooling. Proc ASME Des Eng Tech Conf 2B-2017. https://doi.org/10.1115/detc201767975

  174. You JH, Lee JW, Oh SH, Park K (2021) Conformal mold heating and cooling using a carbon nanotube film heater and additively manufactured cellular metamaterial. Int J Precis Eng Manuf - Green Technol. https://doi.org/10.1007/s40684-021-00407-7

    Article  Google Scholar 

  175. Wu T, Jahan SA, Zhang Y et al (2017) Design optimization of plastic injection tooling for additive manufacturing. Procedia Manuf 10:923–934. https://doi.org/10.1016/j.promfg.2017.07.082

    Article  Google Scholar 

  176. Jahan SA, Wu T, Zhang Y et al (2018) Effect of porosity on thermal performance of plastic injection molds based on experimental and numerically derived material properties. Conf Proc Soc Exp Mech Ser 9:55–63. https://doi.org/10.1007/978-3-319-62834-9_8

    Article  Google Scholar 

  177. Jamaludin NM, Rani AMA (2011) Optimum configuration of fin trees in cooling channels of injection moulding process. 2011 Natl Postgrad Conf - Energy Sustain Explor Innov Minds, NPC 2011. https://doi.org/10.1109/natpc.2011.6136397

  178. Saifullah ABM, Masood SH, Sbarski I (2012) Thermal-structural analysis of bi-metallic conformal cooling for injection moulds. Int J Adv Manuf Technol 62:123–133. https://doi.org/10.1007/S00170-011-3805-5

    Article  Google Scholar 

  179. Natu H, Mazumder J (2000) Modeling of cooling times for molds with conformal cooling channels and heat sinks. Int Congr Appl Lasers Electro-Optics 1:1–10. https://doi.org/10.2351/1.5059538

    Article  Google Scholar 

  180. Todorov T, Todorov G, Romanov B (2019) Design and simulation of mould tools with multi-material structure for plastic injection moulding based on Additive Technology. Int Conf Creat Bus Smart Sustain Growth, CreBUS 2019. https://doi.org/10.1109/crebus.2019.8840061

  181. Tomasoni D, Colosio S, Giorleo L, Ceretti E (2020) Design for additive manufacturing: thermoforming mold optimization via conformal cooling channel technology. Procedia Manuf 47:1117–1122. https://doi.org/10.1016/j.promfg.2020.04.128

    Article  Google Scholar 

  182. Park HS, Dang XP, Nguyen DS, Kumar S (2020) Design of advanced injection mold to increase cooling efficiency. Int J Precis Eng Manuf - Green Technol 7:319–328. https://doi.org/10.1007/S40684-019-00041-4

    Article  Google Scholar 

  183. Arrivabeni EB, Tomasoni D, Giorleo L, Barbato MC (2021) A methodology for mould conformal cooling channels optimization exploiting 3D printing. ESAFORM 2021 - 24th Int Conf Mater Form. https://doi.org/10.25518/esaform21.3894

  184. Shen S, Kanbur BB, Zhou Y, Duan F (2020) Thermal and mechanical assessments of the 3D-printed conformal cooling channels: computational analysis and multi-objective optimization. J Mater Eng Perform 29:8261–8270. https://doi.org/10.1007/S11665-020-05251-5

    Article  Google Scholar 

  185. Doñate CM, Paramio MAR (2013) Computer-aided design new methodology for demoldability analysis based on volume discretization algorithms. Comput Des 45:229–240. https://doi.org/10.1016/j.cad.2012.08.005

    Article  Google Scholar 

  186. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) A Computer-Aided optimization approach for the design of injection mold cooling systems. J Mech Des 120:165–174. https://doi.org/10.1115/1.2826955

    Article  Google Scholar 

  187. Yang D, Lee J, Yoon K, Kim J (2022) A study on the practical application of the integrated ANN system for manufacturing the target quality of the injection molded product. Korea Aust Rheol J 34:147–157. https://doi.org/10.1007/S13367-022-00026-X

    Article  Google Scholar 

  188. Párizs RD, Török D, Ageyeva T, Kovács JG (2022) Machine learning in injection molding: an Industry 4.0 Method of Quality Prediction. Sensors 22. https://doi.org/10.3390/S22072704

  189. Chang H, Su Z, Lu S, Zhang G (2022) Application of deep learning network in bumper warpage quality improvement. Processes 10:1006. https://doi.org/10.3390/PR10051006

    Article  Google Scholar 

  190. Zhou J, Turng LS, Kramschuster A (2006) Single and multi objective optimization for injection molding using numerical simulation with surrogate models and genetic algorithms. Int Polym Process 21:509–520. https://doi.org/10.3139/217.0039

    Article  Google Scholar 

  191. Qiao L, Zhu J, Wan Y et al (2022) Finite element-based machine learning approach for optimization of process parameters to produce silicon carbide ceramic complex parts. Ceram Int 48:17400–17411. https://doi.org/10.1016/J.CERAMINT.2022.03.004

    Article  Google Scholar 

  192. Sun X, Turng LS, Dougherty E, Gorton P (2012) Artificial neural network-based supercritical fluid dosage control for microcellular injection molding. Adv Polym Technol 31:7–19. https://doi.org/10.1002/ADV.20230

    Article  Google Scholar 

  193. Jung H, Jeon J, Choi D, Park AJY (2021) Application of machine learning techniques in injection molding quality prediction: Implications on sustainable manufacturing industry. Sustain 13. https://doi.org/10.3390/SU13084120

  194. Gülçür M, Whiteside B (2021) A study of micromanufacturing process fingerprints in micro-injection moulding for machine learning and Industry 4.0 applications. Int J Adv Manuf Technol 115:1943–1954. https://doi.org/10.1007/S00170-021-07252-7

    Article  Google Scholar 

  195. Obregon J, Hong J, Jung JY (2021) Rule-based explanations based on ensemble machine learning for detecting sink mark defects in the injection moulding process. J Manuf Syst 60:392–405. https://doi.org/10.1016/J.JMSY.2021.07.001

    Article  Google Scholar 

  196. Schmid M, Altmann D, Steinbichler G (2021) A simulation-data-based machine learning model for predicting basic parameter settings of the plasticizing process in injection molding. Polymers (Basel) 13. https://doi.org/10.3390/POLYM13162652

  197. Román AJ, Qin S, Zavala VM, Osswald TA (2021) Neural network feature and architecture optimization for injection molding surface defect prediction of model polypropylene. Polym Eng Sci 61:2376–2387. https://doi.org/10.1002/PEN.25765

    Article  Google Scholar 

  198. Farahani S, Xu B, Filipi Z, Pilla S (2021) A machine learning approach to quality monitoring of injection molding process using regression models. Int J Comput Integr Manuf 34:1223–1236. https://doi.org/10.1080/0951192X.2021.1963485

    Article  Google Scholar 

  199. Xu J, Ren Z, Xie S et al (2021) Deep learning-based optimal tracking control of flow front position in an injection molding machine. Optim Control Appl Methods. https://doi.org/10.1002/OCA.2787

    Article  Google Scholar 

  200. Gim J, Rhee B (2021) Novel analysis methodology of cavity pressure profiles in injection-molding processes using interpretation of machine learning model. Polymers (Basel) 13. https://doi.org/10.3390/POLYM13193297

  201. Im D, Lee S, Lee H et al (2021) A data-centric approach to design and analysis of a surface-inspection system based on deep learning in the plastic injection molding industry. Processes 9. https://doi.org/10.3390/PR9111895

  202. Martin-Doñate C, Shaikheleid S, Torres-Alba A, Mercado-Colmenero JM (2020) A new smart web platform for plastic injection molds in industry 4.0 environments. Lect Notes Mech Eng 309–315. https://doi.org/10.1007/978-3-030-70566-4_49

  203. Saifullah ABM, Masood SH (2007) Cycle time reduction in injection moulding with conformal cooling channels. Proceedings of the International Conference on Mechanical Engineering (ICME 2007). pp 29–31

  204. Qian YP, Wang Y, Huang JH, Zhou XZ (2012) Study on the optimization of conformal cooling channels for plastic injection mold. Adv Mater Res 591–593:502–506. https://doi.org/10.4028/www.scientific.net/amr.591-593.502

    Article  Google Scholar 

  205. Chaabene A, Chatti S, Ben Slama M (2021) Optimization of the cooling of a thermoplastic injection mold. Ann Dunarea Jos Univ Galati Fascicle XII Weld Equip Technol 32:61–70. https://doi.org/10.35219/awet.2021.08

  206. Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol 93:881–900. https://doi.org/10.1007/S00170-017-0426-7

    Article  Google Scholar 

  207. Xu X, Sachs E, Allen S (2001) The design of conformal cooling channels in injection molding tooling. Polym Eng Sci 41:1265–1279. https://doi.org/10.1002/pen.10827

    Article  Google Scholar 

  208. Tang LQ, Chassapis C, Manoochehri S (1997) Optimal cooling system design for multi-cavity injection molding. Finite Elem Anal Des 26:229–251. https://doi.org/10.1016/S0168-874X(96)00083-2

    Article  MATH  Google Scholar 

  209. Yan Z, Qian Y, Huang W et al (2018) Research on heat transfer enhancement of variable cross sectional conformal cooling of injection mold based on fluent. J Mech Eng Res 10:7–20. https://doi.org/10.5897/jmer2018.0488

    Article  Google Scholar 

  210. Au KM, Yu KM (2006) Variable radius conformal cooling channel for rapid tool. Mater Sci Forum 532–533:520–523. https://doi.org/10.4028/0-87849-421-9.520

    Article  Google Scholar 

  211. Dimla DE, Camilotto M, Miani F (2005) Design and optimisation of conformal cooling channels in injection moulding tools. J Mater Process Technol 164–165:1294–1300. https://doi.org/10.1016/j.jmatprotec.2005.02.162

    Article  Google Scholar 

  212. Jahan SA, Wu T, Zhang Y et al (2017) Thermo-mechanical design optimization of conformal cooling channels using design of experiments approach. Procedia Manuf 10:898–911. https://doi.org/10.1016/j.promfg.2017.07.078

    Article  Google Scholar 

  213. Au KM, Yu KM (2014) Variable distance adjustment for conformal cooling channel design in rapid in rapid tool. J Manuf Sci Eng Trans ASME 136. https://doi.org/10.1115/1.4026494

  214. Simiyu LW, Mutua JM, Muiruri PI, Ikua BW (2023) Optimization of polygonal cross-sectioned conformal cooling channels in injection molding. Int J Interact Des Manuf 1–17. https://doi.org/10.1007/S12008-023-01226-7/FIGURES/6

  215. Altaf K, Rani AMBA (2015) Numerical study of profiled conformal cooling channels for cooling time reduction in injection mould tools. Int J Eng Syst Model Simul 7:230–237. https://doi.org/10.1504/ijesms.2015.072508

    Article  Google Scholar 

  216. Jahan SA, El-Mounayri H (2018) A thermomechanical analysis of conformal cooling channels in 3D printed plastic injection molds. Appl Sci 8:2567. https://doi.org/10.3390/app8122567

    Article  Google Scholar 

  217. Altaf K, Raghavan VR, Rani AMA (2011) Comparative thermal analysis of circular and profiled cooling channels for injection mold tools. J Appl Sci 11:2068–2071. https://doi.org/10.3923/jas.2011.2068.2071

    Article  Google Scholar 

  218. Altaf K, Abdul Rani AM, Ahmad F et al (2016) Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts. J Mech Sci Technol 30:4901–4907. https://doi.org/10.1007/S12206-016-1055-Z

    Article  Google Scholar 

  219. Kuo CC, Jiang ZF, Yang XY et al (2020) Characterization of a direct metal printed injection mold with different conformal cooling channels. Int J Adv Manuf Technol 107:1223–1238. https://doi.org/10.1007/S00170-020-05114-2

    Article  Google Scholar 

  220. Saifullah ABM, Masood SH (2007) Optimum cooling channels design and thermal analysis of an Injection moulded plastic part mould. Mater Sci Forum 561–565:1999–2002. https://doi.org/10.4028/0-87849-462-6.1999

    Article  Google Scholar 

  221. Saifullah a BM, Masood SH, Sbarski I (2009) New cooling channel design for injection moulding. World Congr Eng 2009, Vols I Ii I:700–703

  222. Venkatesh G, Ravi Kumar Y (2017) Thermal analysis for conformal cooling channel. Mater Today Proc 4:2592–2598. https://doi.org/10.1016/j.matpr.2017.02.113

    Article  Google Scholar 

  223. Shinde MS, Ashtankar KM (2018) Effect of different shapes of conformal cooling channel on the parameters of injection molding. Comput Mater Contin 54:287–306. https://doi.org/10.3970/cmc.2018.054.287

    Article  Google Scholar 

  224. Shayfull Z, Sharif S, Mohd Zain A et al (2014) Warpage analysis with straight drilled and conformal cooling channels on front panel housing by using taguchi method. Key Eng Mater 594–595:593–603. https://doi.org/10.4028/www.scientific.net/kem.594-595.593

    Article  Google Scholar 

  225. Shayfull Z, Sharif S, Zain AM et al (2016) Improving warpage with milled groove square shape conformal cooling channels. Key Eng Mater 700:31–41. https://doi.org/10.4028/www.scientific.net/kem.700.31

    Article  Google Scholar 

  226. Wahab MS, Raus AAA, Amir I et al (2018) The thermal effect of variate cross-sectional profile on conformal cooling channels in plastic injection moulding. Int J Integr Eng 10:156–163. https://doi.org/10.30880/ijie.2018.10.05.023

    Article  Google Scholar 

  227. Patidar P, Gangrade K (2022) Thermal analysis of conformal cooling channel in plastic molding machine using multi cavity mould. Int J Res Publ Rev 3:348–351

    Google Scholar 

  228. Kamarudin K, Wahab MS, Batcha MFM et al (2017) Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel. AIP Conf Proc 1885. https://doi.org/10.1063/1.5002370

  229. Kadivar M, Tormey D, McGranaghan G (2021) A review on turbulent flow over rough surfaces: fundamentals and theories. Int J Thermofluids 10:100077. https://doi.org/10.1016/J.IJFT.2021.100077

    Article  Google Scholar 

  230. Klingaa CG, Bjerre MK, Baier S et al (2019) Roughness investigation of SLM manufactured conformal cooling channels using X-ray computed tomography. 9th Conf Ind Comput Tomogr

  231. Klingaa CG, Dahmen T, Baier-Stegmaier S et al (2020) Investigation of the roughness variation along the length of LPBF manufactured straight channels. Nondestruct Test Eval 35:304–314. https://doi.org/10.1080/10589759.2020.1785445

    Article  Google Scholar 

  232. Yamaguchi M, Furumoto T, Inagaki S et al (2021) Internal face finishing for a cooling channel using a fluid containing free abrasive grains. Int J Adv Manuf Technol 114:497–507. https://doi.org/10.1007/s00170-021-06893-y

    Article  Google Scholar 

  233. Williams RE, Walczyk DF, Dang HT (2007) Using abrasive flow machining to seal and finish conformal channels in laminated tooling. Rapid Prototyp J 13:64–75. https://doi.org/10.1108/13552540710736740

    Article  Google Scholar 

  234. Han S, Salvatore F, Rech J et al (2020) Surface integrity in abrasive flow machining (AFM) of internal channels created by selective laser melting (SLM) in different building directions. Procedia CIRP 87:315–320. https://doi.org/10.1016/j.procir.2020.02.022

    Article  Google Scholar 

  235. Han S, Salvatore F, Rech J et al (2020) Effect of abrasive flow machining (AFM) finish of selective laser melting (SLM) internal channels on fatigue performance. J Manuf Process 59:248–257. https://doi.org/10.1016/j.jmapro.2020.09.065

    Article  Google Scholar 

  236. Nagalingam AP, Santhanam V, Dachepally NKG, Yeo SH (2021) Multiphase hydrodynamic flow characterization for surface finishing the laser powder bed fused AlSi10Mg conformal cooling channels. J Manuf Process 68:277–292. https://doi.org/10.1016/j.jmapro.2021.05.040

    Article  Google Scholar 

  237. Kuo CC, Jiang ZF, Yang MX et al (2021) Effects of cooling channel layout on the cooling performance of rapid injection mold. Int J Adv Manuf Technol 114:2697–2710. https://doi.org/10.1007/S00170-021-07033-2

    Article  Google Scholar 

  238. Mercado-Colmenero JM, Martin-Doñate C, Rodriguez-Santiago M et al (2019) A new conformal cooling lattice design procedure for injection molding applications based on expert algorithms. Int J Adv Manuf Technol 102:1719–1746. https://doi.org/10.1007/s00170-018-03235-3

    Article  Google Scholar 

  239. Mazur M, Leary M, McMillan M et al (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22:504–518. https://doi.org/10.1108/rpj-06-2014-0075

    Article  Google Scholar 

  240. Li H, Mei Y, Lin B, Xiao H (2016) Design and optimization of conformal cooling system of an injection molding chimney. Mater Sci Forum 850:679–686. https://doi.org/10.4028/www.scientific.net/msf.850.679

    Article  Google Scholar 

  241. Hazwan MHM, Shayfull Z, Sharif S et al (2017) Warpage optimisation on the moulded part with conformal cooling channels using response surface methodology (RSM) and genetic algorithm (GA) optimisation approaches. AIP Conf Proc 1885. https://doi.org/10.1063/1.5002332

  242. Hazwan MHM, Shayfull Z, Sharif S et al (2017) Optimisation of warpage on plastic injection moulding part with MGSS conformal cooling channels moulds using response surface methodology (RSM). AIP Conf Proc 1835. https://doi.org/10.1063/1.4981860

  243. Hazwan MHM, Shayfull Z, Sharif S et al (2017) Warpage optimisation on the moulded part with conformal cooling channels using response surface methodology (RSM) and Glowworm Swarm Optimisation (GSO). MATEC Web Conf 97. https://doi.org/10.1051/matecconf/20179701104

  244. Hazwan MHM, Shayfull Z, Sharif S et al (2017) Warpage optimisation on the moulded part with straight-drilled and MGSS conformal cooling channels using response surface methodology (RSM). AIP Conf Proc 1885. https://doi.org/10.1063/1.5002411

  245. Hazwan MHM, Shayfull Z, Sharif S et al (2017) Warpage optimisation on the moulded part with straight-drilled and conformal cooling channels using response surface methodology (RSM) and glowworm swarm optimisation (GSO). AIP Conf Proc 1885. https://doi.org/10.1063/1.5002351

  246. Kitayama S, Yamazaki Y, Takano M, Aiba S (2018) Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi-criteria decision making. Simul Model Pract Theory 85:95–105. https://doi.org/10.1016/j.simpat.2018.04.004

    Article  Google Scholar 

  247. Cai Y, Hu C, Chu Z et al (2021) Analysis of heat transfer in conformal cooling channel of injection mold based on ANSYS. 6th Int Conf Intell Informatics Biomed Sci 171–176. https://doi.org/10.1109/iciibms52876.2021.9651554

  248. Menges G, Michaeli W, Mohren P Copyright: 2001. 3rd edn. Hanser publications. https://doi.org/10.3139/9783446401808.fm

  249. Kuo CC, Jiang ZF (2019) Numerical and experimental investigations of a conformally cooled maraging steel injection molding tool fabricated by direct metal printing. Int J Adv Manuf Technol 104:4169–4181. https://doi.org/10.1007/s00170-019-04198-9

    Article  Google Scholar 

  250. Sachs E, Wylonis E, Allen S et al (2000) Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym Eng Sci 40:1232–1247. https://doi.org/10.1002/pen.11251

    Article  Google Scholar 

  251. Peças P, Ribeiro I, Henriques E, Raposo A (2019) Additive manufacturing in injection molds-life cycle engineering for technology selection. Adv Appl Manuf Eng 105–139. https://doi.org/10.1016/B978-0-08-102414-0.00004-5

  252. Mitterlehner T, Steinbichler G (2020) A comparison between additively and conventionally manufactured injection moulding inserts. AIP Conf Proc 2205. https://doi.org/10.1063/1.5142927

  253. Vasco J, Barreiros FM, Nabais A, Reis N (2019) Additive manufacturing applied to injection moulding: technical and economic impact. Rapid Prototyp J 25:1241–1249. https://doi.org/10.1108/rpj-07-2018-0179

    Article  Google Scholar 

  254. Liu J, Lu Z, Shi Y et al (2010) Investigation into manufacturing injection mold via indirect selective laser sintering. Int J Adv Manuf Technol 48:155–163. https://doi.org/10.1007/S00170-009-2272-8

    Article  Google Scholar 

  255. Campanelli SL, Contuzzi N, Ludovico AD (2010) Manufacturing of 18 Ni Marage 300 steel samples by selective laser melting. Adv Mater Res 83–86:850–857. https://doi.org/10.4028/www.scientific.net/amr.83-86.850

    Article  Google Scholar 

  256. Wen SF, Ji XT, Zhou Y et al (2018) Corrosion behavior of the S136 mold Steel fabricated by selective laser melting. Chin J Mech Eng Engl Ed 31. https://doi.org/10.1186/s10033-018-0312-8

  257. Bai Y, Yang Y, Xiao Z, Wang D (2018) Selective laser melting of maraging steel: mechanical properties development and its application in mold. Rapid Prototyp J 24:623–629. https://doi.org/10.1108/rpj-05-2017-0104

    Article  Google Scholar 

  258. Zhou Y, Duan L, Ji X et al (2018) Comparisons on microstructure, mechanical and corrosion resistant property of S136 mold steel processed by selective laser melting from two pre-alloy powders with trace element differences. Opt Laser Technol 108:81–89. https://doi.org/10.1016/j.optlastec.2018.06.057

    Article  Google Scholar 

  259. Narvan M, Al-Rubaie KS, Elbestawi M (2019) Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting. Materials (Basel) 12:2284. https://doi.org/10.3390/ma12142284

    Article  Google Scholar 

  260. Fonseca EB, Gabriel AHG, Araújo LC et al (2020) Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing. Addit Manuf 34:101250. https://doi.org/10.1016/j.addma.2020.101250

    Article  Google Scholar 

  261. Saby Q, Buffière JY, Maire E et al (2021) Laser powder bed fusion printability of cobalt-free steel powders for manufacturing injection molds. Addit Manuf 44. https://doi.org/10.1016/j.addma.2021.102031

  262. Kuo CC, Qiu SX (2021) A simple method of reducing coolant leakage for direct metal printed injection mold with conformal cooling channels using general process parameters and heat treatment. Materials (Basel) 14:2553–2570. https://doi.org/10.3390/ma14237258

    Article  Google Scholar 

  263. Kuo CC, Qiu SX, Yang XY (2021) A low-cost and highly efficient method of reducing coolant leakage for direct metal printed injection mold with cooling channels using optimum heat treatment process procedures. Int J Adv Manuf Technol 115:2553–2570. https://doi.org/10.1007/S00170-021-07323-9

    Article  Google Scholar 

  264. Çalışkan Cİ, Coşkun M, Özer G et al (2021) Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering. Int J Adv Manuf Technol 117:3805–3817. https://doi.org/10.1007/s00170-021-07928-0

    Article  Google Scholar 

  265. Jahan S, Wu T, Tovar A, El-Mounayri H (2020) Design, analysis and experimental study of metal-3D printed conformal cooling plastic injection mold. Conf Proc Soc Exp Mech Ser 35–40. https://doi.org/10.1007/978-3-030-30028-9_5

  266. Homar D, Pušavec F (2017) The development of a recognition geometry algorithm for hybrid-Subtractive and additive manufacturing. Stroj Vestnik/J Mech Eng 63:151–160. https://doi.org/10.5545/sv-jme.2016.3924

    Article  Google Scholar 

  267. Soshi M, Ring J, Young C et al (2017) Innovative grid molding and cooling using an additive and subtractive hybrid CNC machine tool. CIRP Ann - Manuf Technol 66:401–404. https://doi.org/10.1016/j.cirp.2017.04.093

    Article  Google Scholar 

  268. Sommer D, Götzendorfer B, Esen C, Hellmann R (2021) Design rules for hybrid additive manufacturing combining selective laser melting and micromilling. Materials (Basel) 14:5753. https://doi.org/10.3390/ma14195753

    Article  Google Scholar 

  269. Chan YL, Diegel O, Xu X (2021) Evaluation of bonding integrity of hybrid-built AlSi10Mg-aluminium alloys parts using the powder bed fusion process. Mater Today Proc 46:1277–1282. https://doi.org/10.1016/j.matpr.2021.02.126

    Article  Google Scholar 

  270. Chan YL, Diegel O, Xu X (2021) A machined substrate hybrid additive manufacturing strategy for injection moulding inserts. Int J Adv Manuf Technol 112:577–588. https://doi.org/10.1007/S00170-020-06366-8

    Article  Google Scholar 

  271. Marin F, de Souza AF, Ahrens CH, de Lacalle LNL (2021) A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds. Int J Adv Manuf Technol 113:1561–1576. https://doi.org/10.1007/S00170-021-06720-4

    Article  Google Scholar 

  272. Saifullah ABM (2011) An investigation on conformal cooling in plastic injection. Swinburne University of Technology. PhD dissertation

  273. Huang J, Lu Y, Wang Q, Lin F (2013) Design and fabrication of conformal cooling channels with vacuum diffusion bonding. Recent Patents Chem Eng 6:176–183. https://doi.org/10.2174/2211334707999140331121333

    Article  Google Scholar 

  274. Goktas M, Guldas A (2020) Production of plastic injection molds with conformal cooling channels by laminated brazing method. Gazi Univ J Sci 33:780–789. https://doi.org/10.35378/gujs.621930

    Article  Google Scholar 

  275. Li HX, Qi HL, Song CH et al (2018) Selective laser melting of P20 mould steel: investigation on the resultant microstructure, high-temperature hardness and corrosion resistance. Powder Metall 61:21–27. https://doi.org/10.1080/00325899.2017.1368965

    Article  Google Scholar 

  276. Biondani F, Bissacco G, Tang PT, Hansen HN (2018) Additive manufacturing of mould inserts with mirror-like surfaces. Procedia CIRP 68:369–374. https://doi.org/10.1016/j.procir.2017.12.097

    Article  Google Scholar 

  277. Salandre M, Garabedian S, Gaillard G et al (2021) Development of a new tooling Steel (L40) for laser powder bed fusion: influence of particle size distribution and powder atomization on mechanical performance. Adv Eng Mater 23. https://doi.org/10.1002/adem.202100350

  278. Dalgarno KW, Stewart TD (2001) Manufacture of production injection mould tooling incorporating conformai cooling channels via indirect selective laser sintering. Proc Inst Mech Eng B J Eng Manuf 215:1323–1332. https://doi.org/10.1243/0954405011519042

    Article  Google Scholar 

  279. Fu Y, Yan C, Yang X et al (2021) Preparation and selective laser sintering of nylon-12 coated copper powders. Rapid Prototyp J 27:1355–1362. https://doi.org/10.1108/rpj-06-2020-0131

    Article  Google Scholar 

  280. Majewski C, Hopkinson N (2004) Reducing ejection forces for parts moulded into direct metal laser sintered tools. Int J Adv Manuf Technol 24:16–23. https://doi.org/10.1007/s00170-003-1727-6

    Article  MATH  Google Scholar 

  281. Kuo CC, Xu WC (2018) Effects of different cooling channels on the cooling efficiency in the wax injection molding process. Int J Adv Manuf Technol 98:887–895. https://doi.org/10.1007/S00170-018-2345-7

    Article  Google Scholar 

  282. Altaf K, Majdi Abdul Rani A, Raghavan VR (2013) Prototype production and experimental analysis for circular and profiled conformal cooling channels in aluminium filled epoxy injection mould tools. Rapid Prototyp J 19:220–229. https://doi.org/10.1108/13552541311323236

    Article  Google Scholar 

  283. Schmidt WR, White RD, Bird CE, Bak JV (2000) Conformal cooling versus conventional cooling: an injection molding case study with P-20 and 3DP™-processed tooling. Mater Res Soc Symp - Proc 625:51–56. https://doi.org/10.1557/proc-625-51

    Article  Google Scholar 

  284. Purav AC, Singraur DS, Sudhakar DSS (2021) Investigations into performance of conventional and conformal cooling channels of a plastic injection mold. IOP Conf Ser Mater Sci Eng 1070:012122. https://doi.org/10.1088/1757-899x/1070/1/012122

    Article  Google Scholar 

  285. O Gloinn T, Hayes C, Hanniffy P, Vaugh K (2007) FEA simulation of conformal cooling within injection moulds. Int J Manuf Res 2:162–170. https://doi.org/10.1504/ijmr.2007.014641

    Article  Google Scholar 

  286. Chung CY (2019) Integrated optimum layout of conformal cooling channels and optimal injection molding process parameters for optical lenses. Appl Sci 9:4341. https://doi.org/10.3390/app9204341

    Article  Google Scholar 

  287. Wang X, Li Z, Gu J et al (2016) Reducing service stress of the injection-molded polycarbonate window by optimizing mold construction and product structure. Int J Adv Manuf Technol 86:1691–1704. https://doi.org/10.1007/S00170-015-8278-5

    Article  Google Scholar 

  288. Mercado-Colmenero JM, Torres-Alba A, Catalan-Requena J, Martin-Doñate C (2021) A new conformal cooling system for plastic collimators based on the use of complex geometries and optimization of temperature profiles. Polymers (Basel) 13:2744. https://doi.org/10.3390/polym13162744

    Article  Google Scholar 

  289. Dimla E, Rull-Trinidad J, Garcia-Granada AA, Reyes G (2018) Thermal comparison of conventional and conformal cooling channel designs for a non-constant thickness screw cap. J Korean Soc Precis Eng 35:95–101. https://doi.org/10.7736/kspe.2018.35.1.95

    Article  Google Scholar 

  290. Torres-Alba A, Mercado-Colmenero JM, Caballero-Garcia JD, Martin-Doñate C (2023) Application of new conformal cooling layouts to the green injection molding of complex slender polymeric parts with high dimensional specifications. Polymers 15(3):558. https://doi.org/10.3390/polym15030558

  291. Ganesh GD, Sarang SC, Sai MJ (2021) Design, optimization and validation of conformal cooling technique for additively manufactured mold insert. J Phys Conf Ser 2070:012225. https://doi.org/10.1088/1742-6596/2070/1/012225

    Article  Google Scholar 

  292. Taylor CM, Ilyas IP, Dalgarno KW, Gosden J (2007) Manufacture of production quality injection mold tools using SLS and HSM. Proc ASME 2007 Int Manuf Sci Eng Conf 9–16. https://doi.org/10.1115/MSEC2007-31030

  293. Ilyas I, Taylor C, Dalgarno K, Gosden J (2010) Design and manufacture of injection mould tool inserts produced using indirect SLS and machining processes. Rapid Prototyp J 16:429–440. https://doi.org/10.1108/13552541011083353

    Article  Google Scholar 

  294. Lu CT, Chen CH, Tseng SC (2019) Application of conformal cooling to reduce cooling time and warpage of a U-shaped plate. AIP Conf Proc 2065. https://doi.org/10.1063/1.5088265

  295. Fouodji Cedric T, Xiao Hua H (2019) Injection molding cycle time reduction for automobile headlamp shell in moldflow. IOP Conf Ser Mater Sci Eng 692. https://doi.org/10.1088/1757-899X/692/1/012002

  296. Hsu FH, Wu BH, Huang CT, Chang RY (2014) Cooling effects study by considering a turbulence model in injection molding. AIP Conf Proc 1593:615–618. https://doi.org/10.1063/1.4873855

    Article  Google Scholar 

  297. Deepika SS, Patil BT, Shaikh VA (2020) Plastic injection molded door handle cooling time reduction investigation using conformal cooling channels. Mater Today Proc 27:519–523. https://doi.org/10.1016/j.matpr.2019.11.316

    Article  Google Scholar 

  298. Huang WT, Tsai CL, Ho WH, Chou JH (2021) Application of intelligent modeling method to optimize the multiple quality characteristics of the injection molding process of automobile lock parts. Polymers (Basel) 13:2515. https://doi.org/10.3390/polym13152515

    Article  Google Scholar 

  299. Huang WT, Tasi ZY, Ho WH, Chou JH (2022) Integrating Taguchi method and gray relational analysis for auto locks by using multiobjective design in computer-aided engineering. Polymers (Basel) 14:644. https://doi.org/10.3390/polym14030644

    Article  Google Scholar 

  300. Park HS, Dang XP (2017) Development of technology for improving productivity and quality of injection molding. Ann DAAAM Proc Int DAAAM Symp 309–314. https://doi.org/10.2507/28th.daaam.proceedings.042

Download references

Funding

This work was supported by Arçelik A.Ş. (grant number OS.00175.01.02TTO).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, visualization, investigation, methodology, writing, and edition were performed by Samaneh Arman. Project administration, supervision, review, and editing were performed by Ismail Lazoglu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ismail Lazoglu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors have agreed for authorship, read, and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. The authors guarantee that the contribution to the work has not been previously published elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, S., Lazoglu, I. A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. Int J Adv Manuf Technol 127, 2035–2106 (2023). https://doi.org/10.1007/s00170-023-11593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11593-w

Keywords

Navigation