Skip to main content
Log in

Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cryogenic CO2-assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO2-assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO2-assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO2 temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO2-assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO2-assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Amiril SAS, Rahim EA, Syahrullail S (2017) A review on ionic liquids as sustainable lubricants in manufacturing and engineering: recent research, performance, and applications. J Clean Prod 168:1571–1589. https://doi.org/10.1016/j.jclepro.2017.03.197

    Article  Google Scholar 

  2. Gajrani KK, Suvin PS, Kailas SV, Sankar MR (2019) Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid. J Clean Prod 206:108–123. https://doi.org/10.1016/j.jclepro.2018.09.178

    Article  Google Scholar 

  3. Astakhov VP (2008) Ecological machining: near-dry machining. Machining: fundamentals and recent advances. Springer, London, pp 195–223

    Google Scholar 

  4. Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals-a review. Int J Mach Tools Manuf 52(1):1–12. https://doi.org/10.1016/j.ijmachtools.2011.09.003

    Article  Google Scholar 

  5. Hannu T, Suuronen K, Aalto-Korte K, Alanko K, Luukkonen R, Järvelä M, Jolanki R, Jaakkola MS (2013) Occupational respiratory and skin diseases among Finnish machinists: findings of a large clinical study. Int Arch Occup Environ Health 86(2):189–197. https://doi.org/10.1007/s00420-012-0754-8

    Article  Google Scholar 

  6. Tan XC, Liu F, Cao HJ, Zhang H (2002) A decision-making framework model of cutting fluid selection for green manufacturing and a case study. 129(1-3):467-470. https://doi.org/10.1016/s0924-0136(02)00614-3

  7. Liu Y, Li XJ, Qu PX (2012) Research development and application of green cutting technology. Appl Mech Mater 160:82–86. https://doi.org/10.4028/www.scientific.net/AMM.160.82

    Article  Google Scholar 

  8. Cai C, Liang X, An Q, Tao Z, Ming W, Chen M (2021) Cooling/lubrication performance of dry and supercritical CO2-based minimum quantity lubrication in peripheral milling Ti-6Al-4V. Int J Precis Eng Manuf-Green Technol 8(2):405–421. https://doi.org/10.1007/s40684-020-00194-7

    Article  Google Scholar 

  9. Dong L, Li C, Zhou F, Bai X, Gao W, Duan Z, Li X, Lv X, Zhang F (2021) Temperature of the 45 steel in the minimum quantity lubricant milling with different biolubricants. Int J Adv Manuf Technol 113(9–10):2779–2790. https://doi.org/10.1007/s00170-021-06708-0

    Article  Google Scholar 

  10. Jamil M, Zhao W, He N, Gupta MK, Sarikaya M, Khan AM, Sanjay MR, Siengchin S, Pimenov DY (2021) Sustainable milling of Ti-6Al-4V: a trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J Clean Prod 281:125374. https://doi.org/10.1016/j.jclepro.2020.125374

    Article  Google Scholar 

  11. Heisel U, Schaal M, Wolf G (2009) Burr formation in milling with minimum quantity lubrication. Prod Eng Res Devel 3(1):23–30. https://doi.org/10.1007/s11740-008-0138-9

    Article  Google Scholar 

  12. Kajaria S, Chittipolu S, Adera S, Hung WN (2012) Micromilling in minimum quantity lubrication. Mach Sci Technol 16(4):524–546. https://doi.org/10.1080/10910344.2012.730848

    Article  Google Scholar 

  13. Park K, Suhaimi MA, Yang G, Lee D, Lee S, Kwon P (2017) Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf 18(1):5–14. https://doi.org/10.1007/s12541-017-0001-z

    Article  Google Scholar 

  14. Beheshti A, Huang Y, Ohno K, Blakey I, Stokes JR (2020) Improving tribological properties of oil-based lubricants using hybrid colloidal additives. Tribol Int 144:106130. https://doi.org/10.1016/j.triboint.2019.106130

    Article  Google Scholar 

  15. Pereira O, Celaya A, Urbikaín G, Rodríguez A, Fernández-Valdivielso A, Lacalle LNLD (2020) CO2 cryogenic milling of Inconel 718: cutting forces and tool wear. J Market Res 9(4):8459–8468. https://doi.org/10.1016/j.jmrt.2020.05.118

    Article  Google Scholar 

  16. Yıldırım ÇV (2020) Investigation of hard turning performance of eco-friendly cooling strategies: cryogenic cooling and nanofluid based MQL. Tribol Int 144:106127. https://doi.org/10.1016/j.triboint.2019.106127

    Article  Google Scholar 

  17. Iturbe A, Hormaetxe E, Garay A, Arrazola PJ (2016) Surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling. Procedia Cirp 45:67–70. https://doi.org/10.1016/j.procir.2016.02.095

    Article  Google Scholar 

  18. Shokrani A, Dhokia V, Newman ST (2016) Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloy. Mach Sci Technol 20(3):475–494. https://doi.org/10.1080/10910344.2016.1191953

    Article  Google Scholar 

  19. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48(9):947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  20. Liu M, Li C, Zhang Y, An Q, Yang M, Gao T, Mao C, Liu B, Cao H, Xu X, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng 16(4):649–697. https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  21. NimelSworna Ross K, Manimaran G, Anwar S, Rahman MA, ErdiKorkmaz M, Gupta MK, Alfaify A, Mia M (2021) Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication. Tribol Int 155:106762. https://doi.org/10.1016/j.triboint.2020.106762

    Article  Google Scholar 

  22. Yıldırım ÇV, Kıvak T, Sarıkaya M, Şirin Ş (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Market Res 9(2):2079–2092. https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  23. Tapoglou N, Lopez MIA, Cook I, Taylor CM (2017) Investigation of the influence of CO2 cryogenic coolant application on tool wear. Procedia Cirp 63:745–749. https://doi.org/10.1016/j.procir.2017.03.351

    Article  Google Scholar 

  24. Khan AM, He N, Li L, Zhao W, Jamil M (2020) Analysis of productivity and machining efficiency in sustainable machining of titanium alloy. Procedia Manufacturing 43:111–118. https://doi.org/10.1016/j.promfg.2020.02.122

    Article  Google Scholar 

  25. Musfirah AH, Ghani JA, Haron CHC (2017) Tool wear and surface integrity of Inconel 718 in dry and cryogenic coolant at high cutting speed. Wear 376–377:125–133. https://doi.org/10.1016/j.wear.2017.01.031

    Article  Google Scholar 

  26. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  27. Chaabani S, Rodriguez I, Cuesta M, Ayed Y, Arrazola PJ, Germain G, Galdos L, Arrazola P, de Argandoña ES, Otegi N, Mendiguren J, Madariaga A, de Buruaga MS (2019) Tool wear and cutting forces when machining Inconel 718 under cryogenic conditions: liquid nitrogen and carbon dioxide. Aip Conf Proc 2113(1) https://doi.org/10.1063/1.5112610

  28. Halim NHA, Haron CHC, Ghani JA, Azhar MF (2019) Tool wear and chip morphology in high-speed milling of hardened Inconel 718 under dry and cryogenic CO2 conditions. Wear 426–427:1683–1690. https://doi.org/10.1016/j.wear.2019.01.095

    Article  Google Scholar 

  29. Pereira O, Rodríguez A, Fernández-Abia AI, Barreiro J, López De Lacalle LN (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod 139:440–449. https://doi.org/10.1016/j.jclepro.2016.08.030

    Article  Google Scholar 

  30. Jiang F, Zhang T, Yan L (2016) Estimation of temperature-dependent heat transfer coefficients in near-dry cutting. Int J Adv Manuf Technol 86(5–8):1207–1218. https://doi.org/10.1007/s00170-015-8293-6

    Article  Google Scholar 

  31. Akhtar W, Sun J, Sun P, Chen W, Saleem Z (2014) Tool wear mechanisms in the machining of nickel based super-alloys: a review. Front Mech Eng 9(2):106–119. https://doi.org/10.1007/s11465-014-0301-2

    Article  Google Scholar 

  32. Hao Z, Gao D, Fan Y, Han R (2011) New observations on tool wear mechanism in dry machining Inconel718. Int J Mach Tools Manuf 51(12):973–979. https://doi.org/10.1016/j.ijmachtools.2011.08.018

    Article  Google Scholar 

  33. Molinari A, Nouari M (2002) Modeling of tool wear by diffusion in metal cutting. Wear 252(1):135–149. https://doi.org/10.1016/S0043-1648(01)00858-4

    Article  Google Scholar 

  34. Vereschaka AA, Grigoriev SN, Sitnikov NN, Oganyan GV, Batako A (2017) Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti, Al)CN and Ti-TiCN-(Ti, Al, Cr)CN coatings: analysis of cutting properties, wear mechanism and diffusion processes. Surf Coat Technol 332:198–213. https://doi.org/10.1016/j.surfcoat.2017.10.027

    Article  Google Scholar 

  35. Diniz AE, Machado ÁR, Corrêa JG (2016) Tool wear mechanisms in the machining of steels and stainless steels. Int J Adv Manuf Technol 87(9–12):3157–3168. https://doi.org/10.1007/s00170-016-8704-3

    Article  Google Scholar 

  36. Liao YS, Shiue RH (1996) Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear 193(1):16–24. https://doi.org/10.1016/0043-1648(95)06644-6

    Article  Google Scholar 

  37. Hu X, Shao F, Wang R (2020) Wear mechanism of WC-Co cemented carbide tool in cutting Ti-6Al-4V based on thermodynamics. J Wuhan Univ Technol-Mater Sci Ed 35(5):973–979. https://doi.org/10.1007/s11595-020-2344-z

    Article  Google Scholar 

  38. Fan Y, Hao Z, Lin J, Yu Z (2015) New observations on tool wear mechanism in machining Inconel 718 under water vapor + air cooling lubrication cutting conditions. J Clean Prod 90:381–387. https://doi.org/10.1016/j.jclepro.2014.11.049

    Article  Google Scholar 

  39. Nerz J, Kushner B, Rotolico A (1992) Microstructural evaluation of tungsten carbide-cobalt coatings. J Therm Spray Technol 1(2):147–152. https://doi.org/10.1007/BF02659015

    Article  Google Scholar 

  40. Xiong Y, Wang W, Jiang R, Lin K, Shao M (2018) Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC. Materials 11(4):606. https://doi.org/10.3390/ma11040606

    Article  Google Scholar 

  41. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275. https://doi.org/10.1063/1.1707586

    Article  Google Scholar 

  42. Ranjan P, Hiremath SS (2021) Investigation of coated tool performance on the machinability, surface residual stress and chip morphology of martensitic AISI 420 steel. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-06303-1

    Article  Google Scholar 

  43. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49(7–8):561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Fujian Province (No. 2020J01066) and the Integration Project of Industry and Research of Fujian Province (No. 2020H6014).

Author information

Authors and Affiliations

Authors

Contributions

Feng Jiang provided ideas and guidance for the paper. Lin Cheng collected and analyzed the data and wrote the paper. Tian Qiu and Shizhan Huang helped collected and analyze the data. Hong Xie and Yan Shui provided experimental support. Chao Liu, Yousheng Li, Liangliang Lin, and Zhiyang Xiang provided guidance and advice. Fuzeng Wang, Xian Wu, and Lan Yan provided constructive suggestions on the structure and some contents of the paper.

Corresponding author

Correspondence to Feng Jiang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate in this study.

Consent for publication

All authors agree to publish this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Qiu, T., Huang, S. et al. Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology. Int J Adv Manuf Technol 126, 543–559 (2023). https://doi.org/10.1007/s00170-023-11122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11122-9

Keywords

Navigation