Skip to main content
Log in

A review of geometry representation and processing methods for cartesian and multiaxial robot-based additive manufacturing

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nowadays, robot-based additive manufacturing (RBAM) is emerging as a potential solution to increase manufacturing flexibility. Such technology allows to change the orientation of the material deposition unit during printing, making it possible to fabricate complex parts with optimized material distribution. In this context, the representation of parts geometries and their subsequent processing become aspects of primary importance. In particular, part orientation, multiaxial deposition, slicing, and infill strategies must be properly evaluated so as to obtain satisfactory outputs and avoid printing failures. Some advanced features can be found in commercial slicing software (e.g., adaptive slicing, advanced path strategies, and non-planar slicing), although the procedure may result excessively constrained due to the limited number of available options. Several approaches and algorithms have been proposed for each phase and their combination must be determined accurately to achieve the best results. This paper reviews the state-of-the-art works addressing the primary methods for the representation of geometries and the subsequent geometry processing for RBAM. For each category, tools and software found in the literature and commercially available are discussed. Comparison tables are then reported to assist in the selection of the most appropriate approaches. The presented review can be helpful for designers, researchers and practitioners to identify possible future directions and open issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Lettori J, Raffaeli R, Peruzzini M et al (2020) Additive manufacturing adoption in product design: an overview from literature and industry. Procedia Manuf 51:665–662. https://doi.org/10.1016/j.promfg.2020.10.092

    Article  Google Scholar 

  2. Raffaeli R, Lettori J, Schmidt J et al (2021) A systematic approach for evaluating the adoption of additive manufacturing in the product design process. Appl Sci 11:1210. https://doi.org/10.3390/app11031210

    Article  Google Scholar 

  3. Durá-Gil JV, Ballester-Fernández A, Cavallaro M et al (2017) New technologies for customizing products for people with special necessities: project FASHION-ABLE. Int J Comput Integr Manuf 30:724–737. https://doi.org/10.1080/0951192X.2016.1145803

    Article  Google Scholar 

  4. Associates W (2020) Wohlers Report 2020: 3D Printing and Additive Manufacturing Global State of the Industry. Wohlers Assoc. Inc.

  5. ISO/ASTM (2015) ISO/ASTM 52900: Additive manufacturing - General principles - Terminology. Int Stand

  6. Gibson I, Rosen D, Stucker B, Khorasani M (2021) Additive manufacturing technologies, vol 17. Springer, Switzerland

    Book  Google Scholar 

  7. Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801. https://doi.org/10.1016/j.addma.2019.05.031

    Article  Google Scholar 

  8. Saboori A, Gallo D, Biamino S et al (2017) An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties. Appl Sci 7:883. https://doi.org/10.3390/app7090883

    Article  Google Scholar 

  9. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  10. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  11. Brenken B, Barocio E, Favaloro A et al (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  12. Khorasani A, Gibson I, Veetil JK, Ghasemi AH (2020) A review of technological improvements in laser-based powder bed fusion of metal printers. Int J Adv Manuf Technol 108:191–209. https://doi.org/10.1007/s00170-020-05361-3

    Article  Google Scholar 

  13. Cedeño-Viveros LD, Vázquez-Lepe E, Rodríguez CA, García-López E (2021) Influence of process parameters for sheet lamination based on laser micro-spot welding of austenitic stainless steel sheets for bone tissue applications. Int J Adv Manuf Technol 115:247–262. https://doi.org/10.1007/s00170-021-07113-3

    Article  Google Scholar 

  14. Xu X, Robles-Martinez P, Madla CM et al (2020) Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf 33:101071. https://doi.org/10.1016/j.addma.2020.101071

    Article  Google Scholar 

  15. Fayazfar H, Liravi F, Ali U, Toyserkani E (2020) Additive manufacturing of high loading concentration zirconia using high-speed drop-on-demand material jetting. Int J Adv Manuf Technol 109:2733–2746. https://doi.org/10.1007/s00170-020-05829-2

    Article  Google Scholar 

  16. Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2:64. https://doi.org/10.3390/jmmp2040064

    Article  Google Scholar 

  17. Ren L, Sparks T, Ruan J, Liou F (2008) Process planning strategies for solid freeform fabrication of metal parts. J Manuf Syst 27:158–165. https://doi.org/10.1016/j.jmsy.2009.02.002

    Article  Google Scholar 

  18. Wu C, Dai C, Fang G et al (2020) General support-effective decomposition for multi-directional 3-D printing. IEEE Trans Autom Sci Eng 17:599–610. https://doi.org/10.1109/TASE.2019.2938219

    Article  Google Scholar 

  19. Williams SW, Martina F, Addison AC et al (2016) Wire + Arc additive manufacturing. Mater Sci Technol (United Kingdom) 32:641–647. https://doi.org/10.1179/1743284715Y.0000000073

    Article  Google Scholar 

  20. Köhler M, Fiebig S, Hensel J, Dilger K (2019) Wire and arc additive manufacturing of aluminum components. Metals (Basel) 9:1–9. https://doi.org/10.3390/met9050608

    Article  Google Scholar 

  21. Jiang J, Newman ST, Zhong RY (2021) A review of multiple degrees of freedom for additive manufacturing machines. Int J Comput Integr Manuf 34:195–211. https://doi.org/10.1080/0951192X.2020.1858510

    Article  Google Scholar 

  22. Dass A, Moridi A (2019) State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings 9:418. https://doi.org/10.3390/COATINGS9070418

    Article  Google Scholar 

  23. Xia C, Pan Z, Polden J et al (2020) A review on wire arc additive manufacturing: monitoring, control and a framework of automated system. J Manuf Syst 57:31–45. https://doi.org/10.1016/j.jmsy.2020.08.008

    Article  Google Scholar 

  24. Fujishima M, Oda Y, Ashida R et al (2017) Study on factors for pores and cladding shape in the deposition processes of Inconel 625 by the directed energy deposition (DED) method. CIRP J Manuf Sci Technol 19:200–204. https://doi.org/10.1016/j.cirpj.2017.04.003

    Article  Google Scholar 

  25. Greer C, Nycz A, Noakes M et al (2019) Introduction to the design rules for Metal Big Area Additive Manufacturing. Addit Manuf 27:159–166. https://doi.org/10.1016/j.addma.2019.02.016

    Article  Google Scholar 

  26. Duty CE, Kunc V, Compton B et al (2017) Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyp J 23:181–189. https://doi.org/10.1108/RPJ-12-2015-0183

    Article  Google Scholar 

  27. Lettori J, Raffaeli R, Peruzzini M, Pellicciari M (2022) A Framework for Hybrid Manufacturing in Robotic Cells. Comput Des Appl 19:1029–1041. https://doi.org/10.14733/cadaps.2022.1029-1041

    Article  Google Scholar 

  28. Knezović N, Topić A (2019) Wire and arc additive manufacturing (WAAM) – a new advance in manufacturing. Lect Notes Networks Syst 42:65–71. https://doi.org/10.1007/978-3-319-90893-9_7

    Article  Google Scholar 

  29. Williams SW, Martina F (2015) Wire+arc additive manufacturing vs. traditional machining from solid: a cost comparison. Cranfield

  30. Sri Harsha A, Vikram Kumar C (2020) Fused deposition modeling using 6-axis industrial robot. Advances in additive manufacturing and joining. Springer, Singapore, pp 159–168

    Chapter  Google Scholar 

  31. Bin II, Larochelle P (2019) MotoMaker: a robot FDM platform for multi-plane and 3D lattice structure printing. Mech Based Des Struct Mach 47:703–720. https://doi.org/10.1080/15397734.2019.1615943

    Article  Google Scholar 

  32. Krimpenis AA, Papapaschos V, Bontarenko E (2020) HydraX, a 3D printed robotic arm for hybrid manufacturing. Part I: Custom design, manufacturing and assembly. Procedia Manuf 51:103–108. https://doi.org/10.1016/j.promfg.2020.10.016

    Article  Google Scholar 

  33. Papapaschos V, Bontarenko E, Krimpenis AA (2020) HydraX, a 3D printed robotic arm for hybrid manufacturing. Part II: control, calibration & programming. Procedia Manuf 51:109–115. https://doi.org/10.1016/j.promfg.2020.10.017

    Article  Google Scholar 

  34. Urhal P, Weightman A, Diver C, Bartolo P (2019) Robot assisted additive manufacturing: a review. Robot Comput Integr Manuf 59:335–345. https://doi.org/10.1016/j.rcim.2019.05.005

    Article  Google Scholar 

  35. Thompson MK, Moroni G, Vaneker T et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann Manuf Technol 65:737–760. https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  36. Manogharan G, Wysk RA, Harrysson OLA (2016) Additive manufacturing-integrated hybrid manufacturing and subtractive processes: economic model and analysis. Int J Comput Integr Manuf 29:473–488. https://doi.org/10.1080/0951192X.2015.1067920

    Article  Google Scholar 

  37. Strong D, Kay M, Conner B et al (2018) Hybrid manufacturing – integrating traditional manufacturers with additive manufacturing (AM) supply chain. Addit Manuf 21:159–173. https://doi.org/10.1016/j.addma.2018.03.010

    Article  Google Scholar 

  38. Chen L, Lau TY, Tang K (2020) Manufacturability analysis and process planning for additive and subtractive hybrid manufacturing of Quasi-rotational parts with columnar features. CAD Comput Aided Des 118:102759. https://doi.org/10.1016/j.cad.2019.102759

    Article  Google Scholar 

  39. Brika SE, Zhao YF, Brochu M, Mezzetta J (2017) Multi-objective build orientation optimization for powder bed fusion by laser. J Manuf Sci Eng Trans ASME 139:111011. https://doi.org/10.1115/1.4037570

    Article  Google Scholar 

  40. Garcìa Cuevas D, Pugliese G (2020) Advanced 3D Printing with Grasshopper®. Clay and FDM

  41. Etienne J, Ray N, Panozzo D et al (2019) Curvislicer: slightly curved slicing for 3-axis printers. ACM Trans Graph 38:1–11. https://doi.org/10.1145/3306346.3323022

    Article  Google Scholar 

  42. Leung YS, Kwok TH, Li X et al (2019) Challenges and status on design and computation for emerging additive manufacturing technologies. J Comput Inf Sci Eng 19:021013. https://doi.org/10.1115/1.4041913

    Article  Google Scholar 

  43. Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11:663. https://doi.org/10.3390/MI11070633

    Article  Google Scholar 

  44. Jafari D, Vaneker THJ, Gibson I (2021) Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Mater Des 202:109471. https://doi.org/10.1016/j.matdes.2021.109471

    Article  Google Scholar 

  45. Pires JN, Azar AS, Nogueira F et al (2021) The role of robotics in additive manufacturing: review of the AM processes and introduction of an intelligent system. Ind Robot Int J Robot Res Appl 49:311–331. https://doi.org/10.1108/IR-06-2021-0110

    Article  Google Scholar 

  46. Liu J, Xu Y, Ge Y et al (2020) Wire and arc additive manufacturing of metal components: a review of recent research developments. Int J Adv Manuf Technol 111:149–198. https://doi.org/10.1007/s00170-020-05966-8

    Article  Google Scholar 

  47. Daminabo SC, Goel S, Grammatikos SA et al (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater today Chem 16:100248. https://doi.org/10.1016/j.mtchem.2020.100248

    Article  Google Scholar 

  48. Bhavar V, Kattire P, Patil V et al (2017) A review on powder bed fusion technology of metal additive manufacturing. Additive manufacturing handbook. CRC Press, Boca Raton, pp 251–253

    Chapter  Google Scholar 

  49. Mekonnen BG, Bright G, Walker A (2016) A study on state of the art technology of laminated object manufacturing (LOM). In: CAD/CAM, Robotics and Factories of the Future. Springer, pp 207–216

  50. Liravi F, Toyserkani E (2018) Additive manufacturing of silicone structures: a review and prospective. Addit Manuf 24:232–242. https://doi.org/10.1016/j.addma.2018.10.002

    Article  Google Scholar 

  51. Rodrigues TA, Duarte V, Miranda RM et al (2019) Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials (Basel) 12:1121. https://doi.org/10.3390/ma12071121

    Article  Google Scholar 

  52. Lockett H, Ding J, Williams S, Martina F (2017) Design for wire + arc additive manufacture: design rules and build orientation selection. J Eng Des 28:568–598. https://doi.org/10.1080/09544828.2017.1365826

    Article  Google Scholar 

  53. Dinovitzer M, Chen X, Laliberte J et al (2019) Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf 26:138–146. https://doi.org/10.1016/j.addma.2018.12.013

    Article  Google Scholar 

  54. Klahn C, Leutenecker B, Meboldt M (2014) Design for additive manufacturing - supporting the substitution of components in series products. Procedia CIRP 21:138–143. https://doi.org/10.1016/j.procir.2014.03.145

    Article  Google Scholar 

  55. Lindemann C, Reiher T, Jahnke U, Koch R (2015) Towards a sustainable and economic selection of part candidates for additive manufacturing. Rapid Prototyp J 21:216–227. https://doi.org/10.1108/RPJ-12-2014-0179

    Article  Google Scholar 

  56. Kim DB, Witherell P, Lipman R, Feng SC (2015) Streamlining the additive manufacturing digital spectrum: a systems approach. Addit Manuf 5:20–30. https://doi.org/10.1016/j.addma.2014.10.004

    Article  Google Scholar 

  57. Reddy SN, Ferguson I, Frecker M et al (2016) Topology optimization software for additive manufacturing: a review of current capabilities and a real-world example. Proc ASME Des Eng Tech Conf 50107:V02AT03A029. https://doi.org/10.1115/DETC2016-59718

  58. Farin G, Hoschek J, Kim M-S (2002) Handbook of computer aided geometric design. Elsevier

    MATH  Google Scholar 

  59. Gomes AJP, Teixeira JG (1991) Form feature modelling in a hybrid CSG/BRep scheme. Comput Graph 15:217–229. https://doi.org/10.1016/0097-8493(91)90075-S

    Article  Google Scholar 

  60. Patil S, Ravi B (2005) Voxel-based representation, display and thickness analysis of intricate shapes. In: Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG’05). p 6

  61. Aremu AO, Brennan-Craddock JPJ, Panesar A et al (2017) A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit Manuf 13:1–13. https://doi.org/10.1016/j.addma.2016.10.006

    Article  Google Scholar 

  62. Rvachev V (1982) Theory of R-functions and some applications

  63. Piegl L, Tiller W (1996) The NURBS book. Springer Science & Business Media

  64. Stroud I, Xirouchakis PC (2000) STL and extensions. Adv Eng Softw 31:83–95. https://doi.org/10.1016/S0965-9978(99)00046-0

    Article  Google Scholar 

  65. Pei E, Ressin M, Campbell RI et al (2019) Investigating the impact of additive manufacturing data exchange standards for re-distributed manufacturing. Prog Addit Manuf 4:331–344. https://doi.org/10.1007/s40964-019-00085-7

    Article  Google Scholar 

  66. Hiller JD, Lipson H (2009) STL 2.0: A proposal for a universal multi-material Additive Manufacturing File format. 20th Annu Int Solid Free Fabr Symp 266–278. https://doi.org/10.26153/tsw/15106

  67. Iancu C (2018) About 3D printing file formats. Ann Constantin Brancusi Univ Targu Jiu-Lett Soc Sci Ser 1:135–138

    Google Scholar 

  68. Popov D, Maltsev E, Fryazinov O et al (2020) Efficient contouring of functionally represented objects for additive manufacturing. CAD Comput Aided Des 129:102917. https://doi.org/10.1016/j.cad.2020.102917

    Article  MathSciNet  Google Scholar 

  69. Song Y, Yang Z, Liu Y, Deng J (2018) Function representation based slicer for 3D printing. Comput Aided Geom Des 62:276–293. https://doi.org/10.1016/j.cagd.2018.03.012

    Article  MathSciNet  MATH  Google Scholar 

  70. Jamieson R, Hacker H (1995) Direct slicing of CAD models for rapid prototyping. Rapid Prototyp J 1:4–12. https://doi.org/10.1108/13552549510086826

    Article  Google Scholar 

  71. Pasko A, Adzhiev V, Sourin A, Savchenko V (1995) Function representation in geometric modeling: concepts, implementation and applications. Vis Comput 11:429–446. https://doi.org/10.1007/BF02464333

    Article  Google Scholar 

  72. Li Q, Hong Q, Qi Q et al (2018) Towards additive manufacturing oriented geometric modeling using implicit functions. Vis Comput Ind Biomed Art 1:1–16. https://doi.org/10.1186/s42492-018-0009-y

    Article  Google Scholar 

  73. Fayolle PA, Fryazinov O, Pasko A (2018) Rounding, filleting and smoothing of implicit surfaces. Comput Aided Des Appl 15:339–408. https://doi.org/10.1080/16864360.2017.1397890

    Article  Google Scholar 

  74. Xu XW (2006) Realization of STEP-NC enabled machining. Robot Comput Integr Manuf 22:144–153. https://doi.org/10.1016/j.rcim.2005.02.009

    Article  Google Scholar 

  75. Hundt L, Drath R, Lüder A, Peschke J (2008) Seamless automation engineering with AutomationML®. In: 2008 IEEE International Technology Management Conference (ICE). IEEE, pp 1–8

  76. Babcinschi M, Freire B, Neto P et al (2019) AutomationML for data exchange in the robotic process of metal additive manufacturing. IEEE Int Conf Emerg Technol Fact Autom ETFA 2019-Septe:65–70. https://doi.org/10.1109/ETFA.2019.8869079

  77. Pandey PM, Venkata Reddy N, Dhande SG (2007) Part deposition orientation studies in layered manufacturing. J Mater Process Technol 185:125–131. https://doi.org/10.1016/j.jmatprotec.2006.03.120

    Article  Google Scholar 

  78. Cheng W, Fuh JYH, Nee AYC et al (1995) Multi-objective optimization of partbuilding orientation in stereolithography. Rapid Prototyp J 1:12–23. https://doi.org/10.1108/13552549510104429

    Article  Google Scholar 

  79. Pham DT, Dimov SS, Gault RS (1999) Part orientation in stereolithography. Int J Adv Manuf Technol 15:674–682. https://doi.org/10.1007/s001700050118

    Article  Google Scholar 

  80. Masood SH, Rattanawong W, Iovenitti P (2003) A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J Mater Process Technol 139:110–116. https://doi.org/10.1016/S0924-0136(03)00190-0

    Article  Google Scholar 

  81. Byun HS, Lee KH (2006) Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robot Comput Integr Manuf 22:69–80. https://doi.org/10.1016/j.rcim.2005.03.001

    Article  Google Scholar 

  82. Nelson J, Galloway G, Rennie AEW et al (2014) Effects of scan direction and orientation on mechanical properties of laser sintered polyamide-12. Int J Adv Des Manuf Technol 7:19–25

    Google Scholar 

  83. Moroni G, Syam WP, Petrò S (2015) Functionality-based part orientation for additive manufacturing. Procedia CIRP 36:217–222. https://doi.org/10.1016/j.procir.2015.01.015

    Article  Google Scholar 

  84. Moroni G, Syam WP, Petró S (2014) Towards early estimation of part accuracy in additive manufacturing. Procedia CIRP 21:300–305. https://doi.org/10.1016/j.procir.2014.03.194

    Article  Google Scholar 

  85. Di Angelo L, Di Stefano P, Dolatnezhadsomarin A et al (2020) A reliable build orientation optimization method in additive manufacturing: the application to FDM technology. Int J Adv Manuf Technol 108:263–276. https://doi.org/10.1007/s00170-020-05359-x

    Article  Google Scholar 

  86. Ransikarbum K, Mason SJ (2016) Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations. Int J Prod Res 54:49–68. https://doi.org/10.1080/00207543.2014.977458

    Article  Google Scholar 

  87. Ransikarbum K, Pitakaso R, Kim N, Ma J (2021) Multicriteria decision analysis framework for part orientation analysis in additive manufacturing. J Comput Des Eng 8:1141–1157. https://doi.org/10.1093/jcde/qwab037

    Article  Google Scholar 

  88. Leirmo TS, Martinsen K (2020) Deterministic part orientation in additive manufacturing using feature recognition. Procedia CIRP 88:405–410. https://doi.org/10.1016/j.procir.2020.05.070

    Article  Google Scholar 

  89. Qin Y, Qi Q, Scott PJ, Jiang X (2019) Determination of optimal build orientation for additive manufacturing using Muirhead mean and prioritised average operators. J Intell Manuf 30:3015–2034. https://doi.org/10.1007/s10845-019-01497-6

    Article  Google Scholar 

  90. Shen H, Ye X, Xu G et al (2020) 3D printing build orientation optimization for flexible support platform. Rapid Prototyp J 26:59–72. https://doi.org/10.1108/RPJ-09-2018-0252

    Article  Google Scholar 

  91. West AP, Sambu SP, Rosen DW (2001) Process planning method for improving build performance in stereolithography. CAD Comput Aided Des 33:65–79. https://doi.org/10.1016/S0010-4485(00)00064-6

    Article  Google Scholar 

  92. Zhang Y, Harik R, Fadel G, Bernard A (2019) A statistical method for build orientation determination in additive manufacturing. Rapid Prototyp J 25:187–207. https://doi.org/10.1108/RPJ-04-2018-0102

    Article  Google Scholar 

  93. Qin Y, Qi Q, Shi P et al (2021) Automatic determination of part build orientation for laser powder bed fusion. Virtual Phys Prototyp 16:29–49. https://doi.org/10.1080/17452759.2020.1832793

    Article  Google Scholar 

  94. Zhao G, Ma G, Feng J, Xiao W (2018) Nonplanar slicing and path generation methods for robotic additive manufacturing. Int J Adv Manuf Technol 96:3149–3159. https://doi.org/10.1007/s00170-018-1772-9

    Article  Google Scholar 

  95. Kanakanala D, Swathi R, Ruan J et al (2010) A multi-axis slicing method for direct laser deposition process. Proc ASME Des Eng Tech Conf 1:425–432. https://doi.org/10.1115/DETC2010-28442

    Article  Google Scholar 

  96. Ding D, Pan Z, Cuiuri D et al (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot Comput Integr Manuf 37:139–150. https://doi.org/10.1016/j.rcim.2015.09.002

    Article  Google Scholar 

  97. Ding D, Pan Z, Cuiuri D, Li H (2015) Process planning for robotic wire and arc additive manufacturing

  98. Zhao D, Guo W (2020) Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping. J Intell Manuf 31:985–1002. https://doi.org/10.1007/s10845-019-01490-z

    Article  Google Scholar 

  99. Ruan J, Sparks TE, Panackal A et al (2007) Automated slicing for a multiaxis metal deposition system. J Manuf Sci Eng Trans ASME 129:303–310. https://doi.org/10.1115/1.2673492

    Article  Google Scholar 

  100. Wei X, Qiu S, Zhu L et al (2018) Toward support-free 3D printing: a skeletal approach for partitioning models. IEEE Trans Vis Comput Graph 24:2799–2812. https://doi.org/10.1109/TVCG.2017.2767047

    Article  Google Scholar 

  101. Tagliasacchi A, Delame T, Spagnuolo M et al (2016) 3D skeletons: a state-of-the-art report. Comput Graph Forum 35:573–597. https://doi.org/10.1111/cgf.12865

    Article  Google Scholar 

  102. Singh P, Dutta D (2001) Multi-direction slicing for layered manufacturing. J Comput Inf Sci Eng 1:129–142. https://doi.org/10.1115/1.1375816

    Article  Google Scholar 

  103. Lee K, Jee H (2015) Slicing algorithms for multi-axis 3-D metal printing of overhangs. J Mech Sci Technol 29:5139–5144. https://doi.org/10.1007/s12206-015-1113-y

    Article  Google Scholar 

  104. Murtezaoglu Y, Plakhotnik D, Stautner M et al (2018) Geometry-based process planning for multi-axis support-free additive manufacturing. Procedia CIRP 78:73–78. https://doi.org/10.1016/j.procir.2018.08.175

    Article  Google Scholar 

  105. Xiao X, Joshi S (2020) Process planning for five-axis support free additive manufacturing. Addit Manuf 36:101569. https://doi.org/10.1016/j.addma.2020.101569

    Article  Google Scholar 

  106. Xu K, Chen L, Tang K (2019) Support-free layered process planning toward 3 + 2-axis additive manufacturing. IEEE Trans Autom Sci Eng 16:838–850. https://doi.org/10.1109/TASE.2018.2867230

    Article  Google Scholar 

  107. Luo L, Baran I, Rusinkiewicz S, Matusik W (2012) Chopper: partitioning models into 3D-printable parts. ACM Trans Graph 31:1–9. https://doi.org/10.1145/2366145.2366148

    Article  Google Scholar 

  108. Liu B, Shen H, Zhou Z et al (2021) Research on support-free WAAM based on surface/interior separation and surface segmentation. J Mater Process Technol 297:117240. https://doi.org/10.1016/j.jmatprotec.2021.117240

    Article  Google Scholar 

  109. Xie F, Jing X, Zhang C et al (2022) Volume decomposition for multi-axis support-free and gouging-free printing based on ellipsoidal slicing. Comput Des 143:103135. https://doi.org/10.1016/j.cad.2021.103135

    Article  MathSciNet  Google Scholar 

  110. Li Y, Tang K, He D, Wang X (2021) Multi-axis support-free printing of freeform parts with lattice infill structures. Comput Des 133:102986. https://doi.org/10.1016/j.cad.2020.102986

    Article  MathSciNet  Google Scholar 

  111. Wang X, Chen L, Lau T-Y, Tang K (2020) A skeleton-based process planning framework for support-free 3+2-axis printing of multi-branch freeform parts. Int J Adv Manuf Technol 110:327–350. https://doi.org/10.1007/s00170-020-05790-0

    Article  Google Scholar 

  112. Au OKC, Tai CL, Chu HK et al (2008) Skeleton extraction by mesh contraction. ACM Trans Graph 27:1–10. https://doi.org/10.1145/1360612.1360643

    Article  Google Scholar 

  113. Zhang J, Liou F (2004) Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des Trans ASME 126:254–261. https://doi.org/10.1115/1.1649966

    Article  Google Scholar 

  114. Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44:67–76. https://doi.org/10.1016/j.rcim.2016.08.008

    Article  Google Scholar 

  115. Gao Y, Wu L, Yan D-M, Nan L (2019) Near support-free multi-directional 3D printing via global-optimal decomposition. Graph Models 104:101034. https://doi.org/10.1016/j.gmod.2019.101034

    Article  Google Scholar 

  116. Xu J, Gu X, Ding D et al (2018) A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyp J 24:1012–1025. https://doi.org/10.1108/RPJ-10-2017-0196

    Article  Google Scholar 

  117. Choi SH, Kwok KT (2002) A tolerant slicing algorithm for layered manufacturing. Rapid Prototyp J 8:161–179. https://doi.org/10.1108/13552540210430997

    Article  Google Scholar 

  118. Mohan Pandey P, Venkata Reddy N, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9:274–288. https://doi.org/10.1108/13552540310502185

    Article  Google Scholar 

  119. Dolenc A, Mäkelä I (1994) Slicing procedures for layered manufacturing techniques. Comput Des 26:119–126. https://doi.org/10.1016/0010-4485(94)90032-9

    Article  Google Scholar 

  120. Sabourin E, And SAH, Bøhn JH (1996) Adaptive slicing using stepwise uniform refinement. Rapid Prototyp J 2:20–26. https://doi.org/10.1108/13552549610153370

    Article  Google Scholar 

  121. Tyberg J (1998) Local adaptive slicing for layered manufacturing

  122. Mao H, Kwok TH, Chen Y, Wang CCL (2019) Adaptive slicing based on efficient profile analysis. CAD Comput Aided Des 107:89–101. https://doi.org/10.1016/j.cad.2018.09.006

    Article  Google Scholar 

  123. Minetto R, Volpato N, Stolfi J et al (2017) An optimal algorithm for 3D triangle mesh slicing. CAD Comput Aided Des 92:1–10. https://doi.org/10.1016/j.cad.2017.07.001

    Article  Google Scholar 

  124. Patel Y, Kshattriya A, Singamneni SB, Choudhury AR (2015) Application of curved layer manufacturing for preservation of randomly located minute critical surface features in rapid prototyping. Rapid Prototyp J 21:725–734. https://doi.org/10.1108/RPJ-07-2013-0073

    Article  Google Scholar 

  125. Kalmanovich G, Dodin L, Tu S (1997) “Curved-Layer” Laminated Object Manufacturing. Proc 7th Int Conf Rapid Prototyp 51–59

  126. Klosterman DA, Chartoff RP, Osborne NR et al (1999) Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyp J 5:61–71. https://doi.org/10.1108/13552549910267362

    Article  Google Scholar 

  127. Kerschbaumer M, Ernst G, O’Leary P (2005) Tool path generation for 3D laser cladding using adaptive slicing technology. 24th Int Congr Appl Lasers Electro-Optics, ICALEO 2005 - Congr Proc 604:310–319. https://doi.org/10.2351/1.5060506

  128. Chakraborty D, Aneesh Reddy B, Roy Choudhury A (2008) Extruder path generation for curved layer fused deposition modeling. CAD Comput Aided Des 40:235–243. https://doi.org/10.1016/j.cad.2007.10.014

    Article  Google Scholar 

  129. Jin Y, Du J, He Y, Fu G (2017) Modeling and process planning for curved layer fused deposition. Int J Adv Manuf Technol 91:273–285. https://doi.org/10.1007/s00170-016-9743-5

    Article  Google Scholar 

  130. Ma W, But WC, He P (2004) NURBS-based adaptive slicing for efficient rapid prototyping. CAD Comput Aided Des 36:1309–1325. https://doi.org/10.1016/j.cad.2004.02.001

    Article  Google Scholar 

  131. Huang B, Singamneni SB (2015) Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyp J 21:354–367. https://doi.org/10.1108/RPJ-06-2013-0059

    Article  Google Scholar 

  132. Lim S, Buswell RA, Valentine PJ et al (2016) Modelling curved-layered printing paths for fabricating large-scale construction components. Addit Manuf 12:216–230. https://doi.org/10.1016/j.addma.2016.06.004

    Article  Google Scholar 

  133. Chen L, Chung MF, Tian Y et al (2019) Variable-depth curved layer fused deposition modeling of thin-shells. Robot Comput Integr Manuf 57:422–434. https://doi.org/10.1016/j.rcim.2018.12.016

    Article  Google Scholar 

  134. Huang B, Singamneni S (2014) Curved layer fused deposition modeling with varying raster orientations. Appl Mech Mater 446–447:263–269. https://doi.org/10.4028/www.scientific.net/AMM.446-447.263

    Article  Google Scholar 

  135. Dai C, Wang CCL, Wu C et al (2018) Support-free volume printing by multi-axis motion. ACM Trans Graph 37:1–14. https://doi.org/10.1145/3197517.3201342

    Article  Google Scholar 

  136. Farouki RT, Koenig T, Tarabanis KA et al (1995) Path planning with offset curves for layered fabrication processes. J Manuf Syst 14:355–368. https://doi.org/10.1016/0278-6125(95)98872-4

    Article  Google Scholar 

  137. Routhu S, Kanakanala D, Ruan J et al (2010) 2-D path planning for direct laser deposition process. Proc ASME Des Eng Tech Conf 44090:415–423. https://doi.org/10.1115/DETC2010-28440

    Article  Google Scholar 

  138. Rajan VT, Srinivasan V, Tarabanis KA (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyp J 7:231–241. https://doi.org/10.1108/13552540110410431

    Article  Google Scholar 

  139. Ding D, Pan Z, Cuiuri D, Li H (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol 73:173–183. https://doi.org/10.1007/s00170-014-5808-5

    Article  Google Scholar 

  140. Giberti H, Sbaglia L, Urgo M (2017) A path planning algorithm for industrial processes under velocity constraints with an application to additive manufacturing. J Manuf Syst 43:160–167. https://doi.org/10.1016/j.jmsy.2017.03.003

    Article  Google Scholar 

  141. Yang Y, Loh HT, Fuh JYH, Wang YG (2002) Equidistant path generation for improving scanning efficiency in layered manufacturing. Rapid Prototyp J 8:30–37. https://doi.org/10.1108/13552540210413284

    Article  Google Scholar 

  142. Jin GQ, Li WD, Tsai CF, Wang L (2011) Adaptive tool-path generation of rapid prototyping for complex product models. J Manuf Syst 30:154–164. https://doi.org/10.1016/j.jmsy.2011.05.007

    Article  Google Scholar 

  143. Jin GQ, Li WD, Gao L (2013) An adaptive process planning approach of rapid prototyping and manufacturing. Robot Comput Integr Manuf 29:23–38. https://doi.org/10.1016/j.rcim.2012.07.001

    Article  Google Scholar 

  144. Zhang YM, Chen Y, Li P, Male AT (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 153:347–357. https://doi.org/10.1016/S0924-0136(02)00867-1

    Article  Google Scholar 

  145. Ren F, Sun Y, Guo D (2009) Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining. Int J Adv Manuf Technol 40:760–768. https://doi.org/10.1007/s00170-008-1385-9

    Article  Google Scholar 

  146. Kulkarni P, Marsan A, Dutta D (2000) Review of process planning techniques in layered manufacturing. Rapid Prototyp J 6:18–35. https://doi.org/10.1108/13552540010309859

    Article  Google Scholar 

  147. Chiu WK, Yeung YC, Yu KM (2006) Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyp J 12:214–221. https://doi.org/10.1108/13552540610682723

    Article  Google Scholar 

  148. Bertoldi M, Yardimci M a, Pistor CM, Giiveri SI (1998) Domain decomposition and space filling curves in toolpath planning and generation. Proceeeding 1998 Solid Fabr Symp

  149. Papacharalampopoulos A, Bikas H, Stavropoulos P (2018) Path planning for the infill of 3D printed parts utilizing Hilbert curves. Procedia Manuf 21:757–764. https://doi.org/10.1016/j.promfg.2018.02.181

    Article  Google Scholar 

  150. Dwivedi R, Kovacevic R (2004) Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J Manuf Syst 23:278–291. https://doi.org/10.1016/S0278-6125(04)80040-2

    Article  Google Scholar 

  151. Ding D, Pan Z, Cuiuri D, Li H (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot Comput Integr Manuf 34:8–19. https://doi.org/10.1016/j.rcim.2015.01.003

    Article  Google Scholar 

  152. Jin Y, He Y, Fu G et al (2017) A non-retraction path planning approach for extrusion-based additive manufacturing. Robot Comput Integr Manuf 48:132–144. https://doi.org/10.1016/j.rcim.2017.03.008

    Article  Google Scholar 

  153. Ferreira RP, Scotti A (2021) The concept of a novel path planning strategy for wire + arc additive manufacturing of bulky parts: Pixel. Metals (Basel) 11:1–22. https://doi.org/10.3390/met11030498

    Article  Google Scholar 

  154. Ding D, Pan Z, Cuiuri D, Li H (2015) A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot Comput Integr Manuf 31:101–110. https://doi.org/10.1016/j.rcim.2014.08.008

    Article  Google Scholar 

  155. Wang J, Chen TW, Jin YA, He Y (2019) Variable bead width of material extrusion-based additive manufacturing. J Zhejiang Univ Sci A 20:73–82. https://doi.org/10.1631/jzus.A1700236

    Article  Google Scholar 

  156. Pan Z, Ding D, Wu B et al (2018) Arc welding processes for additive manufacturing: a review. 3–24. https://doi.org/10.1007/978-981-10-5355-9_1

  157. Wang X, Wang A, Li Y (2019) A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule. Int J Adv Manuf Technol 103:3813–3830. https://doi.org/10.1007/s00170-019-03706-1

    Article  Google Scholar 

  158. Eiliat H, Urbanic J (2017) Minimizing voids with using an optimal raster orientation and bead. Proc ASME 2016 Int Mech Eng Congr Expo IMECE2016 50527:V002T02A070. https://doi.org/10.1115/IMECE2016-67708

  159. Nguyen L, Buhl J, Bambach M (2020) Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling. Addit Manuf 35:101265. https://doi.org/10.1016/j.addma.2020.101265

    Article  Google Scholar 

  160. Jin Y, Du J, Ma Z et al (2017) An optimization approach for path planning of high-quality and uniform additive manufacturing. Int J Adv Manuf Technol 92:651–662. https://doi.org/10.1007/s00170-017-0207-3

    Article  Google Scholar 

  161. Liu J, To AC (2017) Deposition path planning-integrated structural topology optimization for 3D additive manufacturing subject to self-support constraint. Comput Des 91:27–45. https://doi.org/10.1016/j.cad.2017.05.003

    Article  Google Scholar 

  162. Liu HH, Zhao T, Li LY et al (2020) A path planning and sharp corner correction strategy for wire and arc additive manufacturing of solid components with polygonal cross-sections. Int J Adv Manuf Technol 106:4879–4889. https://doi.org/10.1007/s00170-020-04960-4

    Article  Google Scholar 

  163. Volpato N, Galvão LC, Nunes LF et al (2020) Combining heuristics for tool-path optimisation in material extrusion additive manufacturing. J Oper Res Soc 71:867–877. https://doi.org/10.1080/01605682.2019.1590135

    Article  Google Scholar 

  164. Lin S, Xia L, Ma G et al (2019) A maze-like path generation scheme for fused deposition modeling. Int J Adv Manuf Technol 104:1509–1519. https://doi.org/10.1007/s00170-019-03986-7

    Article  Google Scholar 

  165. Gupta P, Krishnamoorthy B, Dreifus G (2020) Continuous toolpath planning in a graphical framework for sparse infill additive manufacturing. CAD Comput Aided Des 127:102880. https://doi.org/10.1016/j.cad.2020.102880

    Article  MathSciNet  Google Scholar 

  166. Ding D, Pan Z, Cuiuri D et al (2016) Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J Clean Prod 133:942–952. https://doi.org/10.1016/j.jclepro.2016.06.036

    Article  Google Scholar 

  167. Ding D, Pan Z, Cuiuri D et al (2016) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot Comput Integr Manuf 39:32–42. https://doi.org/10.1016/j.rcim.2015.12.004

    Article  Google Scholar 

  168. Xiong Y, Park SI, Padmanathan S et al (2019) Process planning for adaptive contour parallel toolpath in additive manufacturing with variable bead width. Int J Adv Manuf Technol 105:4159–4170. https://doi.org/10.1007/s00170-019-03954-1

    Article  Google Scholar 

  169. Venturini G, Montevecchi F, Scippa A, Campatelli G (2016) Optimization of WAAM deposition patterns for T-crossing features. Procedia CIRP 55:95–100. https://doi.org/10.1016/j.procir.2016.08.043

    Article  Google Scholar 

  170. Michel F, Lockett H, Ding J et al (2019) A modular path planning solution for wire + arc additive manufacturing. Robot Comput Integr Manuf 60:1–11. https://doi.org/10.1016/j.rcim.2019.05.009

    Article  Google Scholar 

  171. Peuzin-Jubert M, Polette A, Nozais D et al (2021) Survey on the view planning problem for reverse engineering and automated control applications. CAD Comput Aided Des 141:103094. https://doi.org/10.1016/j.cad.2021.103094

    Article  Google Scholar 

  172. Loizou M, Averkiou M, Kalogerakis E (2020) Learning part boundaries from 3D point clouds. Comput Graph Forum 39:183–195. https://doi.org/10.1111/cgf.14078

    Article  Google Scholar 

  173. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47:2039–2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12%3c2039::AID-NME872%3e3.0.CO;2-1

    Article  MATH  Google Scholar 

  174. Buonamici F, Carfagni M, Furferi R et al (2020) Generative design: an explorative study. Comput Aided Des Appl 18:144–155. https://doi.org/10.14733/cadaps.2021.144-155

  175. Plocher J, Panesar A (2019) Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:108164. https://doi.org/10.1016/j.matdes.2019.108164

    Article  Google Scholar 

  176. Rosso S, Uriati F, Grigolato L et al (2021) An optimization workflow in design for additive manufacturing. Appl Sci 11. https://doi.org/10.3390/app11062572

  177. Barbieri SG, Giacopini M, Mangeruga V, Mantovani S (2018) Design of an additive manufactured steel piston for a high performance engine: developing of a numerical methodology based on topology optimization techniques. SAE Int J Eng 11:1139–1150. https://doi.org/10.4271/2018-01-1385

    Article  Google Scholar 

  178. Agkathidis A (2016) Generative design. Hachette UK, United Kingdom

  179. McKnight M (2017) Generative design: what it is? How is it being used? Why it’sa game changer. In: The International Conference on Design and Technology, KEG. pp 176–181

  180. Gulanová J, Gulan L, Forrai M, Hirz M (2017) Generative engineering design methodology used for the development of surface-based components. Comput Aided Des Appl 14:642–649. https://doi.org/10.1080/16864360.2016.1273581

    Article  Google Scholar 

  181. Krish S (2011) A practical generative design method. Comput Des 43:88–100. https://doi.org/10.1016/j.cad.2010.09.009

    Article  Google Scholar 

  182. Raffaeli R, Mengoni M, Germani M, Mandorli F (2009) An approach to support the implementation of product configuration tools. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. pp 559–570

  183. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Proc 14th Annu Conf Comput Graph Interact Tech SIGGRAPH 1987 21:163–169. https://doi.org/10.1145/37401.37422

  184. Chen L, Lu C, Lian H et al (2020) Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods. Comput Methods Appl Mech Eng 362:112806. https://doi.org/10.1016/j.cma.2019.112806

    Article  MathSciNet  MATH  Google Scholar 

  185. Ansys. https://www.ansys.com/products/additive. Accessed 06 June 2022

  186. Netfabb. https://www.autodesk.com/products/netfabb. Accessed 06 June 2022

  187. 3DS. https://www.3ds.com/products-services/. Accessed 06 June 2022

  188. Ultimaker Cura. https://ultimaker.com/it/software/ultimaker-cura. Accessed 06 June 2022

  189. Hyperfun. https://hyperfun.org/hyperfun/main. Accessed 06 June 2022

  190. Uformia. https://uformia.com/. Accessed 06 June 2022

  191. Keeter M Antimony. https://www.mattkeeter.com/projects/antimony/3/. Accessed 06 June 2022

  192. Keeter M Libfive. https://libfive.com/. Accessed 06 June 2022

  193. Reza Form From Function (F3). https://www.syedrezaali.com/f3-mac-app/. Accessed 06 June 2022

  194. All3DP. https://all3dp.com/. Accessed 06 June 2022

  195. RoboDK. https://robodk.com/. Accessed on 31 August 2022

  196. Grasshopper,. https://www.rhino3d.com/. Accessed on 31 August 2022

  197. Masood SH, Rattanawong W, Iovenitti P (2000) Part build orientations based on volumetric error in fused deposition modelling. Int J Adv Manuf Technol 16:162–168. https://doi.org/10.1007/s001700050022

    Article  Google Scholar 

  198. Masood SH, Rattanawong W (2002) A generic part orientation system based on volumetric error in rapid prototyping. Int J Adv Manuf Technol 19:209–216. https://doi.org/10.1007/s001700200015

    Article  Google Scholar 

  199. Giannatsis J, Dedoussis V (2007) Decision support tool for selecting fabrication parameters in stereolithography. Int J Adv Manuf Technol 33:706–718. https://doi.org/10.1007/s00170-006-0496-4

    Article  Google Scholar 

  200. Canellidis V, Giannatsis J, Dedoussis V (2009) Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int J Adv Manuf Technol 45:714–730. https://doi.org/10.1007/s00170-009-2006-y

    Article  Google Scholar 

  201. Zhang Y, Bernard A, Harik R, Karunakaran KP (2017) Build orientation optimization for multi-part production in additive manufacturing. J Intell Manuf 28:1393–1407. https://doi.org/10.1007/s10845-015-1057-1

    Article  Google Scholar 

  202. Chowdhury S, Mhapsekar K, Anand S (2018) Part build orientation optimization and neural network-based geometry compensation for additive manufacturing process. J Manuf Sci Eng Trans ASME 140:031009. https://doi.org/10.1115/1.4038293

    Article  Google Scholar 

  203. Al-Ahmari AM, Abdulhameed O, Khan AA (2018) An automatic and optimal selection of parts orientation in additive manufacturing. Rapid Prototyp J 24:689–708. https://doi.org/10.1108/RPJ-12-2016-0208

    Article  Google Scholar 

  204. Raju M, Gupta MK, Bhanot N, Sharma VS (2019) A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J Intell Manuf 30:2743–2758. https://doi.org/10.1007/s10845-018-1420-0

    Article  Google Scholar 

  205. Cicconi P, Mandolini M, Favi C et al (2021) Metal additive manufacturing for the rapid prototyping of shaped parts: A case study. Comput Aided Des Appl 18:1061–1079. https://doi.org/10.14733/cadaps.2021.1061-1079

    Article  Google Scholar 

  206. Zhang Y, Bernard A, Gupta RK, Harik R (2016) Feature based building orientation optimization for additive manufacturing. Rapid Prototyp J 22:358–376. https://doi.org/10.1108/RPJ-03-2014-0037

    Article  Google Scholar 

  207. Qin Y, Qi Q, Shi P et al (2020) Automatic generation of alternative build orientations for laser powder bed fusion based on facet clustering. Virtual Phys Prototyp 15:307–324. https://doi.org/10.1080/17452759.2020.1756086

    Article  Google Scholar 

  208. Materialise. https://www.materialise.com/. Accessed 06 June 2022

  209. Tokuyama Y, Bae S (1999) An approximate method for generating draft on a free-form surface. Vis Comput 1:1–8

    Article  Google Scholar 

  210. Kazanas P, Deherkar P, Almeida P et al (2012) Fabrication of geometrical features using wire and arc additive manufacture. Proc Inst Mech Eng B J Eng Manuf 226:1042–1051. https://doi.org/10.1177/0954405412437126

    Article  Google Scholar 

  211. Woo TC (1994) Visibility maps and spherical algorithms. Comput Des 26:6–16. https://doi.org/10.1016/0010-4485(94)90003-5

    Article  MATH  Google Scholar 

  212. De Berg M, Cheong O, Van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications. Springer Science & Business Media

  213. Ramanathan M, Gurumoorthy B (2010) Interior Medial Axis Transform computation of 3D objects bound by free-form surfaces. CAD Comput Aided Des 42:1217–1231. https://doi.org/10.1016/j.cad.2010.08.006

    Article  Google Scholar 

  214. Wang W, Liu Y-J, Wu J et al (2018) Support-Free Hollowing. IEEE Trans Vis Comput Graph 24:2787–2798. https://doi.org/10.1109/TVCG.2017.2764462

    Article  Google Scholar 

  215. Lee M, Fang Q, Cho Y et al (2018) Support-free hollowing for 3D printing via Voronoi diagram of ellipses. Comput Des 101:23–36. https://doi.org/10.1016/j.cad.2018.03.007

    Article  Google Scholar 

  216. Duran C, Subbian V, Giovanetti MT et al (2015) Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp J 21:528–534. https://doi.org/10.1108/RPJ-09-2014-0117

    Article  Google Scholar 

  217. Prusa Slicer. https://www.prusa3d.it/prusaslicer/. Accessed 06 June 2022

  218. Ideamaker. https://www.raise3d.com/ideamaker/. Accessed 06 June 2022

  219. Simplify3D. https://www.simplify3d.com/. Accessed 06 June 2022

  220. Slic3r. https://slic3r.org/. Accessed on 31 August 2022

  221. Wasserfall F, Hendrich N, Zhang J (2017) Adaptive slicing for the FDM process revisited. IEEE Int Conf Autom Sci Eng 2017-Augus 49–54. https://doi.org/10.1109/COASE.2017.8256074

  222. CNCKitchen. https://www.cnckitchen.com/

  223. Ahlers D, Wasserfall F, Hendrich N, Zhang J (2019) 3D printing of nonplanar layers for smooth surface generation. In: 2019 IEEE 15th international conference on automation science and engineering (CASE). IEEE, pp 1737–1743

  224. Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. ACM Trans Graph 2:264–273. https://doi.org/10.1145/245.248

    Article  Google Scholar 

  225. Yao Y, Ding C, Aburaia M et al (2021) A 3D weaving infill pattern for fused filament fabrication. Int J Adv Manuf Technol 117:3101–3114. https://doi.org/10.1007/s00170-021-07694-z

    Article  Google Scholar 

  226. Park SC, Choi BK (2000) Tool-path planning for direction-parallel area milling. CAD Comput Aided Des 32:17–25. https://doi.org/10.1016/S0010-4485(99)00080-9

    Article  Google Scholar 

  227. Li H, Dong Z, Vickers GW (1994) Optimal toolpath pattern identification for single island, sculptured part rough machining using fuzzy pattern analysis. Comput Des 26:787–795. https://doi.org/10.1016/0010-4485(94)90092-2

    Article  Google Scholar 

  228. Wang H, Jang P, Stori JA (2005) A metric-based approach to two-dimensional (2D) tool-path optimization for high-speed machining. J Manuf Sci Eng Trans ASME 127:33–48. https://doi.org/10.1115/1.1830492

    Article  Google Scholar 

  229. Jin Y, He Y, Du J (2017) A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts. Int J Comput Integr Manuf 30:1301–1315. https://doi.org/10.1080/0951192X.2017.1307526

    Article  Google Scholar 

  230. Onstein IF, Evjemo LD, Gravdahl JT (2020) Additive manufacturing path generation for robot manipulators based on CAD models. IFAC-PapersOnLine 53:10037–10043. https://doi.org/10.1016/j.ifacol.2020.12.2724

    Article  Google Scholar 

  231. Wolf M, Elser A, Riedel O, Verl A (2020) A software architecture for a multi-axis additive manufacturing path-planning tool. Procedia CIRP 88:433–438. https://doi.org/10.1016/j.procir.2020.05.075

    Article  Google Scholar 

  232. RobotStudio. https://new.abb.com/products/robotics/robotstudio. Accessed 06 June 2022

  233. WAAM3D. https://waam3d.com/. Accessed 06 June 2022

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jacopo Lettori, Roberto Raffaeli, and Pietro Bilancia. The first draft of the manuscript was written by Jacopo Lettori, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roberto Raffaeli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lettori, J., Raffaeli, R., Bilancia, P. et al. A review of geometry representation and processing methods for cartesian and multiaxial robot-based additive manufacturing. Int J Adv Manuf Technol 123, 3767–3794 (2022). https://doi.org/10.1007/s00170-022-10432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10432-8

Keywords

Navigation