Skip to main content
Log in

Enhanced feature extraction for machinery condition monitoring using recurrence plot and quantification measure

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machinery condition monitoring is a crucial application to enable condition-based predictive maintenance, realizing smart manufacturing in the context of the Industry 4.0 revolution. Machine learning that is built upon data correlation has recently become mainstream for machinery fault diagnosis. To boost the fault diagnosis performance of the machine learning methods, extracting high-quality fault-related features from raw time-series response signals is the key. In this research, we propose a signal processing-based feature extraction method, the so-called recurrence plot (RP), to evaluate the hidden dynamic characteristics of the vibration signals collected from the machinery system that is subject to fault. To further examine the properties of RP, the recurrence quantification analysis (RQA) is employed to quantitatively measure the patterns in the RP. The main strength of the proposed methodology lies in its excellent capability in handling the nonstationary signals with strong system nonlinearity and ambient noise, thereby yielding high-quality features with a high degree of separation in terms of the fault condition. A novel quantitative metric based on the silhouette is established to thoroughly assess the feature quality, providing systematic guidance for machinery condition monitoring. Comprehensive case studies using publicly accessible gear and bearing fault datasets are carried out to validate the proposed methodology. The enhanced performance of the proposed methodology also is highlighted by comparing it with other benchmark methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Jauregui Correa JCA, Lozano Guzman AA (2020) Condition monitoring, in: Mech. Vib. Cond. Monit., Elsevier, pp 147–168. https://doi.org/10.1016/B978-0-12-819796-7.00008-1

  2. Zhou K, Tang J (2021) Harnessing fuzzy neural network for gear fault diagnosis with limited data labels. Int J Adv Manuf Technol 115:1005–1019. https://doi.org/10.1007/s00170-021-07253-6

    Article  Google Scholar 

  3. Teolis C, Teolis A, Paduano J, Lackner M (2005) Analytic representation of eddy current sensor data for fault diagnostics, in: 2005 IEEE Aerosp Conf, IEEE, 2005: pp 3496–3506.https://doi.org/10.1109/AERO.2005.1559652

  4. Liang M, Zhou K (2022) Probabilistic bearing fault diagnosis using Gaussian process with tailored feature extraction. Int J Adv Manuf Technol 119:2059–2076. https://doi.org/10.1007/s00170-021-08392-6

    Article  Google Scholar 

  5. Pandya DH, Upadhyay SH, Harsha SP (2013) Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst Appl 40:4137–4145. https://doi.org/10.1016/j.eswa.2013.01.033

    Article  Google Scholar 

  6. Chen Z, Zhang J, Zhai W, Wang Y, Liu J (2017) Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack. Eng Fail Anal 82:72–81. https://doi.org/10.1016/j.engfailanal.2017.08.028

    Article  Google Scholar 

  7. Pandya Y, Parey A (2013) Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack. Eng Fail Anal 27:286–296. https://doi.org/10.1016/j.engfailanal.2012.08.015

    Article  Google Scholar 

  8. Yu J (2019) A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis. Comput Ind 108:62–72. https://doi.org/10.1016/j.compind.2019.02.015

    Article  Google Scholar 

  9. Chen X, Zhang B, Gao D (2021) Bearing fault diagnosis base on multi-scale CNN and LSTM model. J Intell Manuf 32:971–987. https://doi.org/10.1007/s10845-020-01600-2

    Article  Google Scholar 

  10. Liang M, Zhou K (2022) A hierarchical deep learning framework for combined rolling bearing fault localization and identification with data fusion. J Vib Control 107754632210916. https://doi.org/10.1177/10775463221091601

  11. Wu X, Zhang Y, Cheng C, Peng Z (2021) A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery. Mech Syst Signal Process 149:107327. https://doi.org/10.1016/j.ymssp.2020.107327

    Article  Google Scholar 

  12. Wang D, Chen Y, Shen C, Zhong J, Peng Z, Li C (2022) Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring. Mech Syst Signal Process 168:108673. https://doi.org/10.1016/j.ymssp.2021.108673

    Article  Google Scholar 

  13. Chen Y, Rao M, Feng K, Zuo MJ (2022) Physics-Informed LSTM hyperparameters selection for gearbox fault detection. Mech Syst Signal Process 171:108907. https://doi.org/10.1016/j.ymssp.2022.108907

    Article  Google Scholar 

  14. Yucesan YA, Viana FAC (2022) A hybrid physics-informed neural network for main bearing fatigue prognosis under grease quality variation. Mech Syst Signal Process 171:108875. https://doi.org/10.1016/j.ymssp.2022.108875

    Article  Google Scholar 

  15. Zhou K, Diehl E, Tang J (2023) Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations. Mech Syst Signal Process 185:109772. https://doi.org/10.1016/j.ymssp.2022.109772

    Article  Google Scholar 

  16. Li Z, Yan X, Tian Z, Yuan C, Peng Z, Li L (2013) Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis. Measurement 46:259–271. https://doi.org/10.1016/j.measurement.2012.06.013

    Article  Google Scholar 

  17. Yu X, Huangfu Y, He Q, Yang Y, Du M, Peng Z (2022) Gearbox fault diagnosis under nonstationary condition using nonlinear chirp components extracted from bearing force. Mech Syst Signal Process 180:109440. https://doi.org/10.1016/j.ymssp.2022.109440

    Article  Google Scholar 

  18. Wang L-H, Zhao X-P, Wu J-X, Xie Y-Y, Zhang Y-H (2017) Motor fault diagnosis based on short-time Fourier transform and convolutional neural network, Chinese. J Mech Eng 30:1357–1368. https://doi.org/10.1007/s10033-017-0190-5

    Article  Google Scholar 

  19. Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using continuous wavelet transform. Appl Soft Comput 11:2300–2312. https://doi.org/10.1016/j.asoc.2010.08.011

    Article  Google Scholar 

  20. Cheng Y, Lin M, Wu J, Zhu H, Shao X (2021) Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowledge-Based Syst 216:106796. https://doi.org/10.1016/j.knosys.2021.106796

    Article  Google Scholar 

  21. Yu D, Yang Y, Cheng J (2007) Application of time–frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis. Measurement 40:823–830. https://doi.org/10.1016/j.measurement.2007.03.004

    Article  Google Scholar 

  22. Liu Z, Peng D, Zuo MJ, Xia J, Qin Y (2022) Improved Hilbert-Huang transform with soft sifting stopping criterion and its application to fault diagnosis of wheelset bearings. ISA Trans 125:426–444. https://doi.org/10.1016/j.isatra.2021.07.011

    Article  Google Scholar 

  23. Chen X, Feng Z (2016) Iterative generalized time–frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions. Mech Syst Signal Process 80:429–444. https://doi.org/10.1016/j.ymssp.2016.04.023

    Article  Google Scholar 

  24. Feng Z, Liang M, Chu F (2013) Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech Syst Signal Process 38:165–205. https://doi.org/10.1016/j.ymssp.2013.01.017

    Article  Google Scholar 

  25. Gupta V, Mittal M, Mittal V (2021) Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wirel Pers Commun 118:3615–3646. https://doi.org/10.1007/s11277-021-08411-5

    Article  Google Scholar 

  26. An X, Jiang D, Zhao M, Liu C (2012) Short-term prediction of wind power using EMD and chaotic theory. Commun Nonlinear Sci Numer Simul 17:1036–1042. https://doi.org/10.1016/j.cnsns.2011.06.003

    Article  Google Scholar 

  27. Webber CL, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973. https://doi.org/10.1152/jappl.1994.76.2.965

    Article  Google Scholar 

  28. Marwan N, Thiel M, Nowaczyk NR (2002) Cross recurrence plot based synchronization of time series. Nonlinear Process Geophys 9:325–331. https://doi.org/10.5194/npg-9-325-2002

    Article  Google Scholar 

  29. Afonso LCS, Rosa GH, Pereira CR, Weber SAT, Hook C, Albuquerque VHC, Papa JP (2019) A recurrence plot-based approach for Parkinson’s disease identification. Futur Gener Comput Syst 94:282–292. https://doi.org/10.1016/j.future.2018.11.054

    Article  Google Scholar 

  30. Ouyang G, Zhu X, Ju Z, Liu H (2014) Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot. IEEE J Biomed Heal Informatics 18:257–265. https://doi.org/10.1109/JBHI.2013.2261311

    Article  Google Scholar 

  31. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  32. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dyn Syst Turbul Warwick 1980. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 366–381

    Chapter  Google Scholar 

  33. Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time series. Phys D Nonlinear Phenom 110:43–50

    Article  MATH  Google Scholar 

  34. March TK, Chapman SC, Dendy RO (2005) Recurrence plot statistics and the effect of embedding. Phys D Nonlinear Phenom 200:171–184. https://doi.org/10.1016/j.physd.2004.11.002

    Article  MathSciNet  MATH  Google Scholar 

  35. Hegger R, Kantz H (1999) Improved false nearest neighbor method to detect determinism in time series data. Phys Rev E 60:4970–4973. https://doi.org/10.1103/PhysRevE.60.4970

    Article  Google Scholar 

  36. Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977. https://doi.org/10.1209/0295-5075/4/9/004

    Article  Google Scholar 

  37. Matassini L, Kantz H, Hołyst J, Hegger R (2002) Optimizing of recurrence plots for noise reduction. Phys Rev E 65:021102. https://doi.org/10.1103/PhysRevE.65.021102

    Article  Google Scholar 

  38. Cao P, Zhang S, Tang J, Gear Fault Data, https://figshare.com/articles/dataset/Gear_Fault_Data/6127874/1

  39. Case Western Reserve University Bearing Fault Data, https://engineering.case.edu/bearingdatacenter/download-data-file

  40. Cao P, Zhang S, Tang J (2018) Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning. IEEE Access 6:26241–26253. https://doi.org/10.1109/ACCESS.2018.2837621

    Article  Google Scholar 

  41. Boudiaf A, Moussaoui A, Dahane A, Atoui I (2016) A comparative study of various methods of bearing faults diagnosis using the Case Western Reserve University data. J Fail Anal Prev 16:271–284. https://doi.org/10.1007/s11668-016-0080-7

    Article  Google Scholar 

  42. Jolliffe IT (2002) Principal component analysis, Springer-Verlag. N Y. https://doi.org/10.1007/b98835

    Article  Google Scholar 

  43. van der Maaten L, Hinton G (2008) Visualizing Data using t-SNE. J Mach Learn Res 9 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html

  44. Starczewski A, Krzyżak A (2015) Performance evaluation of the Silhouette index. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (eds) Artif Intell Soft Comput. Springer International Publishing, Cham, pp 49–58

    Chapter  Google Scholar 

  45. Zhou K, Tang J (2021) Computational inference of vibratory system with incomplete modal information using parallel, interactive and adaptive Markov chains. J Sound Vib 511:116331. https://doi.org/10.1016/j.jsv.2021.116331

    Article  Google Scholar 

  46. Mucherino A, Papajorgji PJ, Pardalos PM (2009) k-nearest neighbor classification. Data Min Agric. Springer New York, New York, NY, pp 83–106. https://doi.org/10.1007/978-0-387-88615-2_4

    Chapter  MATH  Google Scholar 

  47. Kadilar C, Cingi H (2003) Ratio estimators in stratified random sampling. Biometrical J 45:218–225. https://doi.org/10.1002/bimj.200390007

    Article  MathSciNet  MATH  Google Scholar 

  48. Berrar D (2019) Cross-Validation, in: Encycl Bioinforma Comput Biol, Elsevier, pp. 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Download references

Funding

This research is supported by National Science Foundation under grant CMMI–2138522.

Author information

Authors and Affiliations

Authors

Contributions

K. Zhou carried out algorithm development and data analysis and interpretation, paper writing, and funding acquisition.

Corresponding author

Correspondence to Kai Zhou.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K. Enhanced feature extraction for machinery condition monitoring using recurrence plot and quantification measure. Int J Adv Manuf Technol 123, 3421–3436 (2022). https://doi.org/10.1007/s00170-022-10392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10392-z

Keywords

Navigation