Skip to main content
Log in

Sensitivity analysis and multi-objective optimization of tungsten inert gas (TIG) welding based on numerical simulation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In welding processes, many factors contribute in achieving a required quality of the welds. Those factors are numerous and they may interact with each other, affecting response parameters such as welding penetration and the heat-affected zone (HAZ) size. Some factors are more important while the influence of others is negligible. To find an optimum factor combination in order to maximize penetration and minimize the HAZ is not an easy task. This contribution is aimed to evaluate the influence of welding energy (E) versus the influence of current (I) and welding speed (Vw) on the penetration and HAZ volume in the autogenous tungsten inert gas welding process. For this purpose, two numerical models are proposed. The first considers an in-house finite volume numerical model, and the second is based on response surface method. A sensitivity analysis of the proposed numerical model using two strategies is also performed. In addition, to determine the best-operating conditions, a multi-objective optimization problem is proposed and solved. The presented numerical models were found to provide good concordance in terms of coefficient of determination and p-value, indicating its significance. Each model (with one or more independent variables) represents detailed information about the physical process and can be used for optimization. The sensitivity analysis demonstrates that the current affects penetration and HAZ volume much stronger than the welding speed does. Physically, this is due to the fact that the current has linear (arc coupling) and non-linear (Joule effect and pressure gradient) influence, and the welding speed contributes linearly, modulating the heat conduction. Finally, it was demonstrated a compromise between the penetration and the HAZ volume by addressing multi-objective optimization. In this context, point C (I = 250 A; Vw = 24.8 cm/min) of the Pareto curve is the optimal option for operation since it provides a lower relative HAZ volume while keeping the same penetration and higher productivity (welding speed).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Y, Zhang W, Zhang Y (2013) Dynamic neuro-fuzzy estimation of the weld penetration in GTAW process. 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). https://doi.org/10.1109/I2MTC.2013.6555640

  2. Menaka M, Vasudevan M, Venkatraman B, Raj B (2005) Estimating bead width and depth of penetration during welding by infrared thermal imaging. Insight 47:564–568

    Article  Google Scholar 

  3. Chokkalingham S, Chandrasekhar N, Vasudevan M (2012) Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling. J Intell Manuf 23:1995–2001. https://doi.org/10.1007/s10845-011-0526-4

    Article  Google Scholar 

  4. Bhattacharya A, Bera TK, Suri VK et al (2014) Influence of heat input in automatic GMAW : penetration prediction and microstructural observation. Mater Manuf Process 29:1210–1218. https://doi.org/10.1080/10426914.2014.930889

    Article  Google Scholar 

  5. Sharma A, Verma DK, Arora N (2016) A scheme of comprehensive assessment of weld bead geometry. Int J Adv Manuf Technol 82:1507–1515. https://doi.org/10.1007/s00170-015-7452-0

    Article  Google Scholar 

  6. Alcock JA, Baufeld B (2017) Diode laser welding of stainless steel 304L. J Mater Process Technol 240:138–144. https://doi.org/10.1016/j.jmatprotec.2016.09.019

    Article  Google Scholar 

  7. Tan W, Shin YC (2015) Laser keyhole welding of stainless steel thin plate stack for applications in fuel cell manufacturing. Sci Technol Weld Join 20:313–318. https://doi.org/10.1179/1362171815Y.0000000005

    Article  Google Scholar 

  8. Quintino L, Costa A, Miranda R et al (2007) Welding with high power fiber lasers - a preliminary study. Mater Des 28:1231–1237. https://doi.org/10.1016/j.matdes.2006.01.009

    Article  Google Scholar 

  9. Paes LES, Pereira M, De Souza Pinto Pereira A et al (2019) Power and welding speed influence on bead quality for overlapped joint laser welding. J Laser Appl 31:1–5. https://doi.org/10.2351/1.5096110

    Article  Google Scholar 

  10. Quintino L, Liskevich O, Vilarinho L, Scotti A (2013) Heat input in full penetration welds in gas metal arc welding (GMAW). Int J Adv Manuf Technol 68:2833–2840. https://doi.org/10.1007/s00170-013-4862-8

    Article  Google Scholar 

  11. Reis RP, Liskevych O (2012) Descriptive model of the heat flow in arc welding targeting the concept of effective heat input. Soldag Insp 17:166–172. https://doi.org/10.1590/S0104-92242012000200010

    Article  Google Scholar 

  12. Liskevych O, Quintino L, Vilarinho LO, Scotti A (2013) Intrinsic errors on cryogenic calorimetry applied to arc welding. Weld World 57:349–357. https://doi.org/10.1007/s40194-013-0035-5

    Article  Google Scholar 

  13. Magalhães ES, Paes LES, Pereira M et al (2018) A thermal analysis in laser welding using inverse problems. Int Commun Heat Mass Transf 92:112–119. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.014

    Article  Google Scholar 

  14. Scotti A, Ponomarev V (2008) Soldagem MIG/MAG: Melhor entendimento melhor desempenho. Artiliber, São Paulo

    Google Scholar 

  15. Unt A (2015) Effect of welding parameters and the heat input on weld bead profile of laser welded T-joint in structural steel. J Laser Appl 27:1–7. https://doi.org/10.2351/1.4906378

    Article  Google Scholar 

  16. Paes LES, Pereira M, Weingaertner WL et al (2019) Comparison of methods to correlate input parameters with depth of penetration in LASER welding. Int J Adv Manuf Technol 101:1157–1169. https://doi.org/10.1007/s00170-018-3018-2

    Article  Google Scholar 

  17. AWS (2010) Standard welding terms and definitions. AWS, Miami

    Google Scholar 

  18. Cao X, Kabir ASH, Wanjara P et al (2014) Global and local mechanical properties of autogenously laser welded Ti-6Al-4V. Metall Mater Trans A 45:1258–1272. https://doi.org/10.1007/s11661-013-2106-z

    Article  Google Scholar 

  19. Prashanth KG, Scudino S, Maity T et al (2017) Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett 5:386–390. https://doi.org/10.1080/21663831.2017.1299808

    Article  Google Scholar 

  20. Bertoli US, Wolfer AJ, Matthews MJ et al (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  Google Scholar 

  21. Ayoola WA, Suder WJ, Williams SW (2017) Parameters controlling weld bead profile in conduction laser welding. J Mater Process Technol 249:522–530. https://doi.org/10.1016/j.jmatprotec.2017.06.026

    Article  Google Scholar 

  22. Neto FC, Milton N, Paes LES et al (2021) Assessment of power modulation formats on penetration depth for laser welding. J Braz Soc Mech Sci Eng 43:4–2. https://doi.org/10.1007/s40430-021-03006-4

    Article  Google Scholar 

  23. Neto FC, Fredel MC, Pereira M, Paes LES (2020) Laser power modulation to grain refinement of SAE 1045 steel welds. J Laser Appl 32:1–6. https://doi.org/10.2351/7.0000096

    Article  Google Scholar 

  24. Rafieazad M (2019) Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. Int J Adv Manuf Technol 105:2121–2134

    Article  Google Scholar 

  25. Chen X, Chen X, Xu H, Madigan B (2015) Monte Carlo simulation and experimental measurements of grain growth in the heat affected zone of 304 stainless steel during multipass welding. Int J Adv Manuf Technol 80:1197–1211. https://doi.org/10.1007/s00170-015-7024-3

    Article  Google Scholar 

  26. Grajcar A, Rozanski M, Stano S et al (2014) Effect of heat input on microstructure and hardness profile of welded. Adv Mater Sci Eng 2014:1–8. https://doi.org/10.1155/2014/658947

    Article  Google Scholar 

  27. Shanmugam R, Murugan N (2006) Effect of gas tungsten arc welding process variables on dilution and bead geometry of Stellite 6 hardfaced valve seat rings. Surf Eng 22:375–384. https://doi.org/10.1179/174329406X126726

    Article  Google Scholar 

  28. Korra NN, Vasudevan M (2015) Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology. Int J Adv Manuf Technol 77:67–81. https://doi.org/10.1007/s00170-014-6426-y

    Article  Google Scholar 

  29. Vidyarthy RS, Dwivedi DK (2018) Optimization of A-TIG process parameters using response surface methodology. Mater Manuf Process 33:709–717. https://doi.org/10.1080/10426914.2017.1303154

    Article  Google Scholar 

  30. Pamnani R, Vasudevan M, Vasantharaja P (2015) Optimization of A-GTAW welding parameters for naval steel (DMR 249 A) by design of experiments approach. J Mater Des Appl 231:320–331. https://doi.org/10.1177/1464420715596455

    Article  Google Scholar 

  31. Giridharan PK, Murugan N (2009) Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets. Int J Adv Manuf Technol 40:478–489. https://doi.org/10.1007/s00170-008-1373-0

    Article  Google Scholar 

  32. Nagaraju S, Vasantharaja P, Chandrasekhar N, Vasudevan M (2016) Optimization of welding process parameters for 9Cr-1Mo steel using RSM and GA. Mater Manuf Processes 31:319–327. https://doi.org/10.1080/10426914.2015.1025974

    Article  Google Scholar 

  33. Das D, Mitra J, Saha SC et al (2020) Taguchi-based optimization of process parameters for quality weld of tungsten inert gas bead-on plate welding on low carbon steel. IEEE 1st International Conference for Convergence in Engineering (ICCE). https://doi.org/10.1109/ICCE50343.2020.9290727

  34. Neto FC, Pereira M, Paes LES et al (2021) Effect of power modulation frequency on porosity formation in laser welding of SAE 1020 steels. Int J Adv Manuf Technol 112:2509–2517. https://doi.org/10.1007/s00170-020-06482-5

    Article  Google Scholar 

  35. Kumar K, Masanta M, Kumar S (2019) Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy. J Mater Process Technol 265:34–43. https://doi.org/10.1016/j.jmatprotec.2018.10.002

    Article  Google Scholar 

  36. Assefa AT, Ahmed GMS, Alamri S et al (2022) Experimental investigation and parametric optimization of the tungsten inert gas welding process parameters of dissimilar metals. Materials 15:1–30. https://doi.org/10.3390/ma15134426

    Article  Google Scholar 

  37. Karganroudi SS, Moradi M, Attar MA et al (2021) Experimental and numerical analysis on TIG arc welding of stainless steel using RSM approach. Metals (Basel) 11:1–19. https://doi.org/10.3390/met11101659

    Article  Google Scholar 

  38. Asserin O, Loredo A, Petelet M et al (2011) Global sensitivity analysis in welding simulations - what are the material data you really need? Finite Elem Anal Des 47:1004–1016. https://doi.org/10.1016/j.finel.2011.03.016

    Article  Google Scholar 

  39. Kim IS, Son KJ, Yang YS, Yaragada PKDV (2003) Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. Int J Mach Tools Manuf 43:763–769. https://doi.org/10.1016/S0890-6955(03)00054-3

    Article  Google Scholar 

  40. Kim IS, Jeong YJ, Son IJ et al (2003) Sensitivity analysis for process parameters influencing weld quality in robotic GMA welding process. J Mater Process Technol 140:676–681. https://doi.org/10.1016/S0924-0136(03)00725-8

    Article  Google Scholar 

  41. Palani PK, Engineering M, College G (2006) Sensitivity analysis for process parameters in cladding of stainless steel by flux cored arc welding. J Manuf Process 8:90–100

    Article  Google Scholar 

  42. Karaoglu S, Seçgin A (2008) Sensitivity analysis of submerged arc welding process parameters. J Mater Process Technol 202:500–507. https://doi.org/10.1016/j.jmatprotec.2007.10.035

    Article  Google Scholar 

  43. Truppel GH, Angerhausen M, Pipinikas A et al (2019) Stability analysis of the cold metal transfer (CMT) brazing process for galvanized steel plates with ZnAl4 filler metal. Int J Adv Manuf Technol 103:2485–2494. https://doi.org/10.1007/s00170-019-03702-5

    Article  Google Scholar 

  44. Silva RHG, Paes LES, Barbosa RC et al (2018) Assessing the effects of solid wire electrode extension (Stick out) increase in MIG/MAG welding. J Braz Soc Mech Sci Eng 40:1–7. https://doi.org/10.1007/s40430-017-0948-9

    Article  Google Scholar 

  45. Sartori F, Silva RHG, Dutra JC et al (2017) A comparative analysis of different versions of the MIG/MAG process variants for the root pass in orbital welding. Soldag Insp 22:442–452. https://doi.org/10.1590/0104-9224/SI2204.04

    Article  Google Scholar 

  46. Karthikeyan R, Balasubramanian V (2013) Statistical optimization and sensitivity analysis of friction stir spot welding process parameters for joining AA 7075. Exp Tech 37:6–15. https://doi.org/10.1111/j.1747-1567.2011.00746.x

    Article  Google Scholar 

  47. Palani K, Elanchezhian C, Raju M (2018) Sensitivity analysis of process parameters on tensile properties in plasma arc welding of AA8011-H24 aluminium alloys and Ti3Al2.5V Titanium alloys using Response Surface Methodology. IOP Conf Ser Mater Sci Eng 390:1–10. https://doi.org/10.1088/1757-899X/390/1/012042

    Article  Google Scholar 

  48. Chaki S (2019) Neural networks based prediction modelling of hybrid laser beam welding process parameters with sensitivity analysis. SN Appl Sci 1:1–11. https://doi.org/10.1007/s42452-019-1264-z

    Article  Google Scholar 

  49. Silva RHG, Paes LES, de Sousa GL et al (2019) Design of a wire measurement system for dynamic feeding TIG welding using instantaneous angular speed. Int J Adv Manuf Technol 101:1651–1660. https://doi.org/10.1007/s00170-018-3026-2

    Article  Google Scholar 

  50. Crank J (1984) Free and moving boundary problems. Oxford University Press, New York

    MATH  Google Scholar 

  51. Incropera FP, DeWitt DP (1990) Introduction to heat transfer. Wiley, New York

    Google Scholar 

  52. Ferro P, Berto F, James MN (2017) A simplified model for TIG-dressing numerical simulation. Modell Simul Mater Sci Eng 25:1–13. https://doi.org/10.1088/1361-651X/aa623d

    Article  Google Scholar 

  53. Li HX, Zhu WZ, Ruvalcaba D et al (2016) Influence of liquid core reduction on stress-strain distribution and strand deformation in a thin slab caster. ISIJ Int 56:1616–1624. https://doi.org/10.2355/isijinternational.ISIJINT-2016-242

    Article  Google Scholar 

  54. dos Santos Paes LE, Andrade JR, Prates MG et al (2021) Path planning strategies for hardness improvement employing surface remelting in AISI 1045 steel. Surf Coat Technol 425:1–14. https://doi.org/10.1016/j.surfcoat.2021.127728

    Article  Google Scholar 

  55. Schwedersky MB, Dutra JC, Okuyama MP et al (2011) High productivity TIG welding: influence of shielding gases on the limit speed for defect formation. Soldag Insp 16:333–340

    Article  Google Scholar 

  56. Box MJ, Hunter WG, Hunter JS (1978) Statistics for experiments: an introduction to design, data analysis and model building. John Wiley and Sons, New York

    MATH  Google Scholar 

  57. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  58. Pannell DJ (1997) Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agric Econ 16:139–152

    Article  Google Scholar 

  59. Lobato FS, Steffen V (2011) A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy. JAISCR 1:259–267

    Google Scholar 

  60. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  Google Scholar 

  61. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

Download references

Funding

This work received financial and technical support from Petrobras, ANP, CAPES, FAPEMIG, and CNPq.

Author information

Authors and Affiliations

Authors

Contributions

Luiz Eduardo dos Santos Paes: supervision, project administration, conceptualization, methodology, formal analysis, investigation, writing–original draft; João Rodrigo Andrade: software, formal analysis, investigation, writing–original draft; Fran Sérgio Lobato: software, formal analysis, investigation, writing–original draft; Elisan dos Santos Magalhães: formal analysis, writing–review and editing; Volodymyr Ponomarov: formal analysis, writing–review and editing; Francisco José de Souza: software, writing–review and editing; Louriel Oliveira Vilarinho: writing–review and editing; funding acquisition.

Corresponding author

Correspondence to Luiz Eduardo dos Santos Paes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Paes, L., Andrade, J.R., Lobato, F.S. et al. Sensitivity analysis and multi-objective optimization of tungsten inert gas (TIG) welding based on numerical simulation. Int J Adv Manuf Technol 122, 783–797 (2022). https://doi.org/10.1007/s00170-022-09934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09934-2

Keywords

Navigation