Skip to main content

Advertisement

Log in

Compensate for longitudinally discrepant springback and bow in chain-die forming processes by multiple sections optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As a gradual deformation process like roll forming, chain-die forming is attractive to manufacturing advanced high-strength steel (AHSS) channels. The gradual forming mode induces complex and longitudinally discrepant springback and brings additional difficulty to the die design of AHSS forming. In this work, a new chain-die design method by adopting a multi-cross-section compensation strategy is proposed to compensate for the longitudinally discrepant springback and bow. A hat geometry with six design variables is adopted to ensure an undercut-free and smooth optimized die surface. The sectional springback compensation is taken as a multi-objective optimization problem, and the non-dominated sorting genetic algorithm-II is used to minimize the deviation between calculated sectional springback profiles and desired geometry. In addition, the longitudinal bow is also taken into account with an optimal counterpart arc on the web. The optimal results indicate that the non-uniform springback in chain-die forming exhibits a linear variation along the longitudinal direction for the constant hat channel. Chain-die forming experiments of constant and variable AHSS channels are carried out for verification, and both the springback and longitudinal bow are reduced by using the proposed die design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Hilditch TB (2005) Properties and automotive applications of advanced high-strength steels (AHSS) In: Welding and joining of advanced high strength steels (AHSS). Woodhead Publishing, pp 9–28

  2. Traub T, Chen X, Groche P (2017) Experimental and numerical investigation of the bending zone in roll forming. Int J Mech Sci 131–132:956–970. https://doi.org/10.1016/j.ijmecsci.2017.07.056

    Article  Google Scholar 

  3. Weiss M, Abeyrathna B, Rolfe B, Abee A, Wolfkamp H (2017) Effect of coil set on shape defects in roll forming steel strip. J Manuf Process 25:8–15. https://doi.org/10.1016/j.jmapro.2016.10.005

    Article  Google Scholar 

  4. Sun Y, Li Y, Li D, Meehan PA, Daniel WJT, Shi L, Xiao H, Zhang J, Ding S (2019) Predictive modelling of longitudinal bow in chain-die formed AHSS profiles and its experimental verification. J Manuf Process 39:208–225. https://doi.org/10.1016/j.jmapro.2019.02.007

    Article  Google Scholar 

  5. Li Y, Sun Y, Xiao H, Bong HJ, Shi L, Li S, Li D, Ding S, Wagoner RH (2018) A numerical study on chain-die forming of the AHSS U-channel and contrast with roll forming. Int J Mech Sci 135:279–293. https://doi.org/10.1016/j.ijmecsci.2017.11.034

    Article  Google Scholar 

  6. Qian Z, Wang C, An K, Meehan PA, Daniel WJT, Ding S (2019) Investigation of the forming load in the chain-die forming process. J Manuf Process 45:70–82. https://doi.org/10.1016/j.jmapro.2019.06.031

    Article  Google Scholar 

  7. Deole AD, Barnett MR, Weiss M (2018) The numerical prediction of ductile fracture of martensitic steel in roll forming. Int J Solids Struct 144–145:20–31. https://doi.org/10.1016/j.ijsolstr.2018.04.011

    Article  Google Scholar 

  8. Zhang Y, Ding S (2012) A comparison study of chain-die forming and roll forming by forming a top hat section. 14th Int Conf Met Forming Ger Akad Górniczo-Hutnicza Kraków 703–706

  9. Li Y, Liang Z, Zhang Z, Zou T, Li D, Ding S, Xiao H, Shi L (2019) An analytical model for rapid prediction and compensation of springback for chain-die forming of an AHSS U-channel. Int J Mech Sci 159:195–212. https://doi.org/10.1016/j.ijmecsci.2019.05.046

    Article  Google Scholar 

  10. Liang Z, Liu Y, Zou T, Li D, Ding S, Xiao H, Shi L, Peng Y (2021) Analysis and suppression of flange wrinkling in AHSS chain-die forming channels with a curved axis. J Manuf Process 71:70–84. https://doi.org/10.1016/j.jmapro.2021.09.006

  11. Sun Y, Li Y, Daniel WJT, Meehan PA, Liu Z, Ding S (2017) Longitudinal strain development in chain-die forming AHSS products: analytical modelling, finite element analysis and experimental verification. J Mater Process Technol 243:322–334. https://doi.org/10.1016/j.jmatprotec.2016.12.019

    Article  Google Scholar 

  12. Qian Z, Sun Y, Li Y, Wang C, Meehan PA, Daniel WJT, Ding S (2020) Investigation of the design process for the chain-die forming technology based on the developed multi-stand numerical model. J Mater Process Technol 277:116484. https://doi.org/10.1016/j.jmatprotec.2019.116484

    Article  Google Scholar 

  13. Birkert A, Hartmann B, Lepple F, Straub M, Zimmermann P (2019) Improved spring-back compensation strategy through location optimized part position in the dies. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/651/1/012036

    Article  Google Scholar 

  14. Cheng HS, Cao J, Xia ZC (2007) An accelerated springback compensation method. Int J Mech Sci 49:267–279. https://doi.org/10.1016/j.ijmecsci.2006.09.008

    Article  Google Scholar 

  15. Chou IN, Hung C (1999) Finite element analysis and optimization on springback reduction. Int J Mach Tools Manuf 39:517–536. https://doi.org/10.1016/S0890-6955(98)00031-5

    Article  Google Scholar 

  16. Geka T, Asakura M, Kiso T, Sugiyama T, Takamura M, Asakawa M (2013) Reduction of springback in hat channel with high-strength steel sheetby stroke returning deep drawing. Key Eng Mater 554–557:1320–1330. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1320

    Article  Google Scholar 

  17. Birkert A, Hartmann B, Straub M (2017) New method for springback compensation for the stamping of sheet metal components. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/896/1/012067

    Article  Google Scholar 

  18. Webb RD, Hardt DE (1991) A transfer function description of sheet metal forming for process control 113:44–52. J Manuf Sci Eng 113:44

    Google Scholar 

  19. Livatyali H, Ergeldi MM (2006) Design of over-crown in sheet metal stamping using finite element method. J Mater Process Technol 173:14–20. https://doi.org/10.1016/j.jmatprotec.2004.10.020

    Article  Google Scholar 

  20. Karafillis AP, Boyce MC (1996) Tooling and binder design for sheet metal forming processes compensating springback error. Int J Mach Tools Manuf 36:503–526. https://doi.org/10.1016/0890-6955(95)00023-2

    Article  Google Scholar 

  21. Gan W, Wagoner RH (2004) Die design method for sheet springback. Int J Mech Sci 46:1097–1113. https://doi.org/10.1016/j.ijmecsci.2004.06.006

    Article  Google Scholar 

  22. Lingbeek RA, Gan W, Wagoner RH, Meinders T, Weiher J (2008) Theoretical verification of the displacement adjustment and springforward algorithms for springback compensation. Int J Mater Form 1:159–168. https://doi.org/10.1007/s12289-008-0369-5

    Article  Google Scholar 

  23. Weiher J, Rietman B, Kose K, Ohnimus S, Petzoldt M, Ghosh S, Castro JC, Lee JK (2004) Controlling springback with compensation strategies. Aip Conf Proc doi 10(1063/1):1766660

    Google Scholar 

  24. Lingbeek R, Huétink J, Ohnimus S, Petzoldt M, Weiher J (2005) The development of a finite elements based springback compensation tool for sheet metal products. J Mater Process Technol 169:115–125. https://doi.org/10.1016/j.jmatprotec.2005.04.027

    Article  Google Scholar 

  25. Lan F, Chen J, Lin J (2006) A method of constructing smooth tool surfaces for FE prediction of springback in sheet metal forming. J Mater Process Technol 177:382–385. https://doi.org/10.1016/j.jmatprotec.2006.04.092

    Article  Google Scholar 

  26. Yang XA, Ruan F (2001) A die design method for springback compensation based on displacement adjustment. Int J Mech Sci 53:399–406. https://doi.org/10.1016/j.ijmecsci.2011.03.002

    Article  Google Scholar 

  27. Shen H, Li S, Ni X, Chen G (2013) A modified displacement adjustment method to compensate for surface deflections in the automobile exterior panels. J Mater Process Technol 213:1943–1953. https://doi.org/10.1016/j.jmatprotec.2013.05.009

    Article  Google Scholar 

  28. Zhang Z, Wu J, Zhang S, Wang M, Guo R, Guo S (2016) A new iterative method for springback control based on theory analysis and displacement adjustment. Int J Mech Sci 105:330–339. https://doi.org/10.1016/j.ijmecsci.2015.11.005

    Article  Google Scholar 

  29. Zang S, Lee M, Hoon Kim J (2013) Evaluating the significance of hardening behavior and unloading modulus under strain reversal in sheet springback prediction. Int J Mech Sci 77:194–204. https://doi.org/10.1016/j.ijmecsci.2013.09.033

    Article  Google Scholar 

  30. Gu B, He J, Li S, Chen Y, Li Y (2017) Cyclic sheet metal test comparison and parameter calibration for springback prediction of dual-phase steel sheets. J Manuf Sci Eng 139:91010. https://doi.org/10.1115/1.4037040

    Article  Google Scholar 

  31. Wagoner RH, Lim H, Lee MG (2013) Advanced issues in springback. Int J Plast 45:3–20. https://doi.org/10.1016/j.ijplas.2012.08.006

    Article  Google Scholar 

  32. Angsuseranee N, Pluphrach G, Watcharasresomroeng B, Songkroh A (2018) Springback and sidewall curl prediction in U-bending process of AHSS through finite element method and artificial neural network approach. Songklanakarin J Sci Technol 40:534–539. https://doi.org/10.14456/sjst-psu.2018.87

  33. Konzack S, Radonjic R, Liewald M, Altan T (2018) Prediction and reduction of springback in 3D hat shape forming of AHSS. Procedia Manuf. https://doi.org/10.1016/j.promfg.2018.07.296

    Article  Google Scholar 

  34. Wang Z, Hu Q, Yan J, Chen J (2017) Springback prediction and compensation for the third generation of UHSS stamping based on a new kinematic hardening model and inertia relief approach. Int J Adv Manuf Technol 90:875–885. https://doi.org/10.1007/s00170-016-9439-x

    Article  Google Scholar 

  35. Komgrit L, Hamasaki H, Hino R, Yoshida F (2016) Elimination of springback of high-strength steel sheet by using additional bending with counter punch. J Mater Process Technol 229:199–206. https://doi.org/10.1016/j.jmatprotec.2015.08.029

    Article  Google Scholar 

  36. Choi J, Lee J, Bong HJ, Lee M-G, Barlat F (2018) Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. Int J Solids Struct 151:152–164. https://doi.org/10.1016/j.ijsolstr.2017.09.030

    Article  Google Scholar 

  37. Troive L, Bałon P, Świątoniowski A, Mueller T, Kiełbasa B (2017) Springback compensation for a vehicle’s steel body panel. Int J Comput Integr Manuf 31:152–163. https://doi.org/10.1080/0951192X.2017.1379096

    Article  Google Scholar 

  38. Bui QV, Ponthot JP (2008) Numerical simulation of cold roll-forming processes. J Mater Process Technol 202:275–282. https://doi.org/10.1016/j.jmatprotec.2007.08.073

    Article  Google Scholar 

  39. Liang Z, Liu Y, Zou T, Li D, Ding S, Xiao H, Shi L, Peng Y (2021) Springback and longitudinal bow in chain-die forming U and hat channels. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-07374-y

    Article  Google Scholar 

  40. Cha WG, Kim N (2013) Study on twisting and bowing of roll-formed products made of high strength steel. Int J Precis Eng Manuf 14:1527–1533. https://doi.org/10.1007/s12541-013-0206-8

    Article  Google Scholar 

  41. Bidabadi BS, Naeini HM, Tehrani MS, Barghikar H (2016) Experimental and numerical study of bowing defects in cold roll-formed, U-channel sections. J Constr Steel Res 118:243–253. https://doi.org/10.1016/j.jcsr.2015.11.007

    Article  Google Scholar 

  42. Park JC, Yang DY, Cha MH, Kim DG, Nam JB (2014) Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross-sections. Int J Mach Tools Manuf 86:68–80. https://doi.org/10.1016/j.ijmachtools.2014.07.001

    Article  Google Scholar 

  43. Seo YH, Park JW, Song WJ, Kang BS, Kim J (2014) Flexible die design and springback compensation based on modified displacement adjustment method. Adv Mech Eng 2014:1–15. https://doi.org/10.1155/2014/131253

    Article  Google Scholar 

  44. Cafuta G, Mole N, Štok B (2012) An enhanced displacement adjustment method: springback and thinning compensation. Mater Des 40:476–487. https://doi.org/10.1016/j.matdes.2012.04.018

    Article  Google Scholar 

  45. Mole N, Cafuta G, Štok B (2014) A 3D forming tool optimisation method considering springback and thinning compensation. J Mater Process Technol 214:1673–1685. https://doi.org/10.1016/j.jmatprotec.2014.03.017

    Article  Google Scholar 

  46. Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many objective particle swarm optimization. Inf Sci (Ny) 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026

    Article  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2022) A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. on Evol. IEEE Trans Evol Comput - TEC 6. https://doi.org/10.1109/4235.996017

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant No. U1860110). The experimental materials and facilities provided by Baosteel Research Institute and Ningbo SaiRolf Metal Forming Co., Ltd. are also acknowledged.

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. U1860110).

Author information

Authors and Affiliations

Authors

Contributions

Zhenye Liang: conceptualization, methodology, simulation, experiments, writing—original draft; Tianxia Zou: resources, funding acquisition, conceptualization, methodology, writing - review and editing; Wei Dai: programming, validation; Zhiheng Zhang: experiments, validation; Yang Liu: experiments, validation; Kaijun Lu: simulation, validation; Dayong Li: resources, funding acquisition, conceptualization, writing - review and editing, supervision; Shichao Ding: conceptualization, methodology; Yinghong Peng: resources, project administration.

Corresponding authors

Correspondence to Tianxia Zou or Dayong Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 11 lists the sample points and the calculated displacement fields of the chain-die formed constant hat channel. Note that only the displacement fields of the lead section are presented. Table 12 lists the initial sample points and the calculated displacement fields of the variable hat channel, and only the displacement fields of the lead section are presented.

Table 11 The calculated springback results of 60 initial sample points for the chain-die formed constant hat channel
Table 12 The calculated springback results of the sample points for the chain-die formed variable hat channel

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Zou, T., Dai, W. et al. Compensate for longitudinally discrepant springback and bow in chain-die forming processes by multiple sections optimization. Int J Adv Manuf Technol 121, 6407–6430 (2022). https://doi.org/10.1007/s00170-022-09728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09728-6

Keywords

Navigation