Skip to main content
Log in

Geometric error identification method for machine tools based on the spatial body diagonal error model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For the identification of the geometric error in the CNC machine tools, this paper proposes a geometric error identification method for machine tools based on the spatial body diagonal error model. A body diagonal error measurement method is proposed to obtain the spatial error, which avoids repeated installation errors. In order to address the pathological problem in geometric error identification, a two-step regularization method based on the spatial body diagonal error model is proposed. Firstly, the mapping relationship between the geometric error of the machine tools and the spatial body diagonal error, which is measured by a multibeam laser interferometer, is established. Secondly, a two-step regularization method is adopted to improve the identification accuracy and the stability. Finally, the body diagonal error measurement method is applied to a horizontal three-axis machining center, and the measurement results show that the method is feasible. Simulations and experiments are performed to compare the two-step regularized identification method with the least square identification method, and the results prove the good reliability and validity of the proposed method. Comparing the identification results with the measurement results, the absolute error is less than 4.8584 μm, and the relative error is less than 25.6062%. It shows that the spatial body diagonal error model proposed in this paper is comprehensive, and the geometric error identification method is systematic and universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

xyz :

The displacement in x, y and z axes

\(\begin{aligned}&{^{W}\boldsymbol{T}_{Z}},\;{^{Z}\boldsymbol{T}_{{Z}_{0}}},\;{^{{Z}_{0}}\boldsymbol{T}_{O}},\;{^{O}\boldsymbol{T}_{{X}_{0}}},\\&{^{{X}_{0}}\boldsymbol{T}_{X}},\;{^{X}\boldsymbol{T}_{{Y}_{0}}},\;{^{{Y}_{0}}\boldsymbol{T}_{Y}},\;{^{Y}\boldsymbol{T}_{T}}\end{aligned}\)  :

The macroscopic displacement matrix between the components of the machine tool

\(\begin{aligned}&{^{W}y_{Z}},\;{^{{Z_{0}}}x_{O}},\;{^{O}y_{{X_{0}}}},\\&{^{O}z_{{X_{0}}}},\;{^{X}y_{{Y_{0}}}},\;{^{X}z_{{Y_{0}}}},\;{^{Y}z_{T}}\end{aligned}\)  :

The distance between the origin of the coordinate system for each component

\(\begin{aligned}&{^{W}\Delta_{Z}},\;{^{Z}\Delta_{{Z_{0}}}},\;{^{{Z_{0}}}\Delta_{O}},{^{O}\Delta_{{X_{0}}}},\\&{^{{X_{0}}}\Delta_{X}},\;{^{X}\Delta_{{Y_{0}}}},\;{^{{Y_{0}}}\Delta_{Y}},\;{^{Y}\Delta_{T}}\end{aligned}\)  :

The microscopic displacement matrix between the components of the machine tool

\(\delta_{i} (j),\;\varepsilon_{i} (j)\) :

The position-dependent geometric error of the machine tool, i, j = x, y, z

\(\alpha, \;\beta,\; \gamma\) :

The squareness error of the machine tool

\(\theta_{Y0},\;\theta_{X1},\;\theta_{Z2}\) :

The rotation angle during the transformation of the body diagonal coordinate system and the bed coordinate system

\(l_{x},\;l_{y},\;l_{z}\) :

The working stroke of x, y, and z axes

\(x_{m},\;y_{m},\;z_{m}\) :

The coordinate value of the space point under the measurement coordinate system

\(x_{o},\;y_{o},\;\;z_{o}\) :

The coordinate value of the space point under the bed coordinate system

P w :

The workpiece machining point coordinate vector in the worktable coordinate system

P t :

The tool tip point coordinate vector in the tool coordinate system

\(x_{w},\;y_{w},\;z_{w}\) :

The workpiece machining point coordinate value in the worktable coordinate system

\(x_{t},\;y_{t},\;z_{t}\) :

The tool tip point coordinate value in the tool coordinate system

\({\boldsymbol{T}}_{1}\) :

The coordinate transformation matrix between different body diagonal coordinate systems and the bed coordinate system

\(^{M}{\boldsymbol{P}}_{w},\;^{M}{\boldsymbol{P}}_{t}\) :

The coordinate vector of the workpiece machining point and the tool tip point under the measurement coordinate system

\(^{W}{\boldsymbol{T}}_{T},\;^{W}{\boldsymbol{T}}_{T}^{\prime }\) :

The coordinate transformation matrix from the worktable coordinate system to the tool coordinate system under the ideal and actual conditions

\(^{W}{\boldsymbol{E}}_{T}\) :

The error motion matrix between the worktable coordinate system and the tool coordinate system

\(\Delta {P}_{X},\;\Delta {P}_{Y},\;\Delta {P}_{Z}\) :

The position error in X, and Z directions, respectively, under the measurement coordinate system

\(\Delta {V}_{X},\;\Delta {V}_{Y},\;\Delta {V}_{Z}\) :

The angular error in X, Y and Z directions, respectively, under the measurement coordinate system

\(\Delta {P}_{x},\;\Delta {P}_{y},\;\Delta {P}_{z}\) :

The position error in x, y and z directions, respectively, under the bed coordinate system

\(\Delta {V}_{x},\;\Delta {V}_{y},\;\Delta {V}_{x}\) :

The angular error in x, y and z directions, respectively, under the bed coordinate system

T :

The spatial coordinate transformation matrix

\(\Delta {\boldsymbol{r}}\) :

The spatial error matrix of the machine tool

A :

The mapping matrix between the spatial error and the twenty-one geometric errors of the machine tool

ε :

The twenty-one geometric errors matrix of the machine tool

\(\delta_{ij,k},\;\boldsymbol\varepsilon_{ij,k}\) :

The k-th polynomial coefficient in the position error and the angular error \(i,j = x,y,z\); \(k = 1,2, \cdots ,n\)

\({\boldsymbol{p}}_{{\delta_{i} (j)}},\;{\boldsymbol{p}}_{{\varepsilon_{i} (j)}}\) :

The polynomial coefficient vector of the position error and the angular error, \(i,j = x,y,z\)

\({\boldsymbol{h}}_{{\delta_{i} (j)}}, \;{\boldsymbol{h}}_{{\varepsilon_{i} (j)}}\) :

The position matrix corresponding to the position error and angular error, \(i,j = x,y,z\)

H :

The mapping matrix consisting of the machine tool position coordinates

p :

The geometric error polynomial coefficient vector

M :

The mapping matrix between the spatial error and the geometric error polynomial coefficient

m :

The number of measurement points involved in identification

n :

The polynomial order

\(\hat{\boldsymbol{p}}\) :

The identification result of p

R :

The regularization matrix

\(\alpha\) :

The regularized parameter

TIKHONOV:

The regularization theory

\(MESM(\hat{\boldsymbol{p}})\)  :

The mean square error matrix of \(\hat{\boldsymbol{p}}\)

\(\hat{\sigma }_{0}^{2}\) :

The unit weight variance of \(\hat{\boldsymbol{p}}\)

\(\xi\) :

The deviation between \(\hat{\boldsymbol{p}}\) and \(\boldsymbol p\)  

References

  1. Lei WT, Hsu YY (2017) Accuracy enhancement of five-axis CNC machines through real-time error compensation. Int J Mach Tool Manufact 43(9):871–877. https://doi.org/10.1016/S0890-6955(03)00089-0

    Article  Google Scholar 

  2. Chu CH, Huang WN, Hsu YY (2008) Machining accuracy improvement in five-axis flank milling of ruled surfaces. Int J Mach Tool Manufact 48(7–8):914–921. https://doi.org/10.1016/j.ijmachtools.2007.10.023

    Article  Google Scholar 

  3. Andolfatto L, Lavernhe S, Mayer JRR (2011) Evaluation of servo, geometric and dynamic error sources on five axis high-speed machine tool. Int J Mach Tool Manufact 51(10–11):787–796. https://doi.org/10.1016/j.ijmachtools.2011.07.002

    Article  Google Scholar 

  4. Abdulshahed AM, Longstaff AP, Fletcher S, Potdar A (2016) Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model. J Manuf Syst 41:130–142. https://doi.org/10.1016/j.jmsy.2016.08.006

    Article  Google Scholar 

  5. Ma C, Liu JL, Wang SL (2020) Thermal error compensation of linear axis with fixed-fixed installation-ScienceDirect. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.105531

    Article  Google Scholar 

  6. Chen JX, Lin SW, He BW (2014) Geometric error measurement and identification for rotary table of multi-axis machine tool using double ball-bar. Int J Mach Tool Manufact 77:47–55. https://doi.org/10.1016/j.ijmachtools.2013.10.004

    Article  Google Scholar 

  7. Ding S, Song ZQ, Wu WW, Guo EK, Huang XD, Song AP (2020) Geometric error modeling and compensation of horizontal CNC turning center for TI worm turning-ScienceDirect. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105266

    Article  Google Scholar 

  8. Zhu SW, Ding GF, Qin SF, Lei J, Zhuang L, Yan KY (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tool Manufact 52(1):24–29. https://doi.org/10.1016/j.ijmachtools.2011.08.011

    Article  Google Scholar 

  9. Hsu YY, Wang SS (2007) A new compensation method for geometric errors of five-axis machine tools. Int J Mach Tool Manufact 47(2):352–360. https://doi.org/10.1016/j.ijmachtools.2006.03.008

    Article  Google Scholar 

  10. Qiu H, Li Y, Li YB (2001) A new method and device for motion accuracy measurement of NC machine tools. Part 1: principle and equipment. Int J Mach Tool Manufact 41(4):521–534. https://doi.org/10.1016/S0890-6955(00)00092-4

  11. Knapp W (1983) Circular test for three-coordinate measuring machines and machine tools. Precis Eng 5(3):115–124. https://doi.org/10.1016/0141-6359(83)90007-7

    Article  Google Scholar 

  12. Bryan JB (1982) A simple method for testing measuring machines and machine tools Part 1: principles and applications. Precis Eng 4(2):61–69. https://doi.org/10.1016/0141-6359(82)90018-6

    Article  Google Scholar 

  13. Bryan JB (1982) A simple method for testing measuring machines and machine tools. Part 2: construction details. Precis Eng 4(3):125–138. https://doi.org/10.1016/0141-6359(82)90075-7

  14. Wang JD, Guo JJ (2016) Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm. Measurement 94:139–148. https://doi.org/10.1016/j.measurement.2016.07.076

    Article  Google Scholar 

  15. Schwenke H, Franke M, Hannaford J, Kunzmann H (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann-Manuf Technol 54(1):475–478. https://doi.org/10.1016/S0007-8506(07)60148-6

    Article  Google Scholar 

  16. Lee JH, Liu Y, Yang SH (2006) Accuracy improvement of miniaturized machine tool: geometric error modeling and compensation. Int J Mach Tool Manufact 46(12–13):1508–1516. https://doi.org/10.1016/j.ijmachtools.2005.09.004

    Article  Google Scholar 

  17. Ezedine F, Linares JM, Sprauel JM, Chaves-Jacob J (2016) Smart sequential multilateration measurement strategy for volumetric error compensation of an extra-small machine tool. Precis Eng 43:178–186. https://doi.org/10.1016/j.precisioneng.2015.07.007

    Article  Google Scholar 

  18. Sun GM, He GY, Zhang DW, Sang YC, Zhang XL, Ding BH (2018) Effects of geometrical errors of guideways on the repeatability of positioning of linear axes of machine tools. Int J Adv Manuf Technol 98(9–12):2319–2333. https://doi.org/10.1007/s00170-018-2291-4

    Article  Google Scholar 

  19. Su SP, Li SY, Wang GL (2002) Geometric error identification method of machining center based on spatial error model. China J Mech Eng 38(7):121–125. https://doi.org/10.3321/j.issn:0577-6686.2002.07.026

    Article  Google Scholar 

  20. Sun K, Shen XQ (2009) Technology of NC error parameter identification based on 22 displacement measurement line. Mech Eng. https://doi.org/10.3969/j.issn.1002-2333.2009.03.060

    Article  Google Scholar 

  21. Chen GQ, Yuan JX, Ni J (2001) A displacement measurement approach for machine geometric error assessment. Int J Mach Tool Manufact 41(1):149–161. https://doi.org/10.1016/S0890-6955(00)00049-3

    Article  Google Scholar 

  22. Liu YW, Liu LB, Zhao XS, Zhang Q, Wang SX (1998) Investigation of error compensation technology for NC machine tool. China Mech Eng (12):4852–4852. CNKI:SUN:ZGJX.0.1998-12-014

  23. Xia CJ, Wang SL, Ma C, Wang SB, Xiao YL (2020) Crucial Geometric Error Compensation Towards Gear Grinding Accuracy Enhancement Based on Simplified Actual Inverse Kinematic Model. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105319

    Article  Google Scholar 

  24. Shen JH (2008) Key technique and application in error compensation for CNC machine tools. Dissertation, Graduate Shanghai Jiao Tong University

  25. Xu K, Li GL, He K, Tao XH (2020) Identification of Position-Dependent Geometric Errors with Non-Integer Exponents for linear axis Using Double Ball Bar. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105326

    Article  Google Scholar 

  26. Bohez ELJ, Ariyajunya B, Sinlapeecheewa C, Shein TMM, Lap DT, Belforte G (2007) Systematic geometric rigid body error identification of 5-axis milling machines. Comput Aided Des 39:229–244. https://doi.org/10.1016/j.cad.2006.11.006

    Article  Google Scholar 

  27. Liu Y, Wan M, Xing WJ, Xiao QB, Zhang WH (2018) Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. Int J Mech Sci 145:299–317. https://doi.org/10.1016/j.ijmecsci.2018.07.022

    Article  Google Scholar 

  28. Liu Y, Wan M, Xiao QB, Zhang WH (2019) Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA). Int J Mech Sci 152:211–227. https://doi.org/10.1016/j.ijmecsci.2018.12.050

    Article  Google Scholar 

  29. Pahk HJ, Kim YS, Moon JH (1997) A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model. Int J Mach Tool Manufact 37(11):1583–1596. https://doi.org/10.1016/S0890-6955(97)00029-1

    Article  Google Scholar 

  30. Xu LX (2014) A general method for impact dynamic analysis of a planar multi-body system with a rolling ball bearing joint. Nonlinear Dyn 78(2):857–879. https://doi.org/10.1007/s11071-014-1482-2

    Article  MathSciNet  Google Scholar 

  31. Li BT, Hong J, Liu ZF (2014) Stiffness design of machine tool structures by a biologically inspired topology optimization method. Int J Mach Tool Manufact 84:33–44. https://doi.org/10.1016/j.ijmachtools.2014.03.005

    Article  Google Scholar 

  32. Wang ZJ (2003) Research on the regularization solutions of ill-posed problems in geodesy. Dissertation, Graduate School of Chinese Academy of Sciences

  33. Wang ZJ, Ou JK, Liu LT (2005) A Method for Resolving Ill-conditioned Problems-Two-Step Solution. J Wuhan Univ 09:821–824. https://doi.org/10.3321/j.issn:1671-8860.2005.09.017

    Article  Google Scholar 

  34. Ngo SH, Kemény S, Deák A (2003) Performance of the ridge regression method as applied to complex linear and nonlinear models. Chemom Intell Lab Syst 67(1):69–78. https://doi.org/10.1016/S0169-7439(03)00062-5

    Article  Google Scholar 

  35. Hu ZG, Hua XH (2010) Determination of Tikhonov regularization parameters by optimal regularization method. Surv Mapp Sci 35(002):51–53. CNKI:SUN:CHKD.0.2010-02-018

  36. Wang ZJ, Ou JK (2004) Determination of ridge parameters in ridge estimation by L-curve method. J Wuhan Univ 29(003):235–238. https://doi.org/10.3321/j.issn:1671-8860.2004.03.012

    Article  Google Scholar 

  37. Xu YB, Pei Y, Dong F (2016) An extended L-curve method for choosing a regularization parameter in electrical resistance tomography. Measurement Sci Technol. https://doi.org/10.1088/0957-0233/27/11/114002

    Article  Google Scholar 

  38. Tao BZ (1998) On the variance of unit weight formula. Bull. Surv Mapp (09):5–6. CNKI:SUN:CHTB.0.1998-09-001

  39. Sim HY, Ramli R, Saifizul AA, Abdullah MAK (2014) Empirical investigation of acoustic emission signals for valve failure identification by using statistical method. Measurement 58:165–174. https://doi.org/10.1016/j.measurement.2014.08.028

    Article  Google Scholar 

Download references

Funding

This research work is supported by the National Key R&D Program of China (No. 2018YFB1701201) and the National Natural Science Foundation of China (No. 51675378).

Author information

Authors and Affiliations

Authors

Contributions

Sitong Wang: Conceptualization, methodology, software, investigation, writing—original draft. Gaiyun He: Conceptualization, supervision, funding acquisition, resources. Wenjie Tian: Data curation, resources, visualization. Dawei Zhang: Validation, formal analysis, project administration. Yumeng Song: Writing, review and editing; visualization. Yichen Yan: Data curation, writing review. Ran Xie: Experiment, writing—review and editing.

Corresponding author

Correspondence to Gaiyun He.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Consent to participate

All the authors, namely, Sitong Wang, Gaiyun He, Wenjie Tian, Dawei Zhang, Yumeng Song, Yichen Yan, and Ran Xie have consented to participate in the paper and agreed to submit the manuscript.

Consent for publication

All the authors, namely, Sitong Wang, Gaiyun He, Wenjie Tian, Dawei Zhang, Yumeng Song, Yichen Yan, and Ran Xie have consented to publish the manuscript after peer review.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., He, G., Tian, W. et al. Geometric error identification method for machine tools based on the spatial body diagonal error model. Int J Adv Manuf Technol 121, 7997–8017 (2022). https://doi.org/10.1007/s00170-022-09633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09633-y

Keywords

Navigation