Skip to main content
Log in

Research on the profile modification of power skiving tool for internal gears

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Power skiving provides an effective solution and considerable machining efficiency for the machining of internal gears. The tool profile design and the reusability after resharpening is crucial in gear manufacturing. In this paper, a novel method of tool profile correction based on the inverse error-complement of involute profile is proposed. Firstly, the mathematical model of involute cutter with rake angle and relief angle is established. The profile error relative to the target gear is calculated by the mathematical model. Then, the distribution of the gear profile errors is fitted by a fifth-order multinomial. The fitted multinomial function is attached to the cutter profile. The maximum theoretical error of the target gear profile is in 10e-7 mm order of magnitude through the calculation of fewer iterations. Finally, the distribution of the multinomial coefficients along the resharpening direction is obtained by linear programming. The result shows that the cutter designed by the proposed method possess almost negligible error to the gear profile and good repeatability of resharpening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. von Pittler W (1910) Verfahren zum Schneiden von Zahnrädern mittels eines zahnrad-artigen, an den Stirnflächen der Zähne mit Schneidkanten versehen-en Schneidwerkzeuges. Patent Application, Germany

    Google Scholar 

  2. Klocke F, Brecher C, Löpenhaus C, Ganser P, Staudt J, Krömer M (2016) Technological and simulative analysis of power skiving. 26TH CIRP Design Conference 50:773–778. https://doi.org/10.1016/j.procir.2016.05.052

  3. Spath D, Hühsam A (2002) Skiving for high-performance machining of periodic structures. CIRP Ann Manuf Technol 51(1):91–94. https://doi.org/10.1016/S0007-8506(07)61473-5

    Article  Google Scholar 

  4. Uriu K, Osafune T, Murakami T, Nakamura M, Iba D, Funamoto M, Moriwaki I (2017) Effects of shaft angle on cutting tool parameters in internal gear skiving. J Mech Sci Technol 31:5665–5673. https://doi.org/10.1007/s12206-017-1107-z

    Article  Google Scholar 

  5. Guo Z, Mao S-M, Huyan L, Duan D-S (2018) Research and improvement of the cutting performance of skiving tool. Mech Mach Theory 120:302–313. https://doi.org/10.1016/j.mechmachtheory.2017.08.004

    Article  Google Scholar 

  6. Masatomo Inui Yu, Huang HO, Umezu N (2020) Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manuf 48:520–527. https://doi.org/10.1016/j.promfg.2020.05.078

    Article  Google Scholar 

  7. Onozuka H, Tayama F, Huang Y, Inui M (2020) Cutting force model for power skiving of internal gear. J Manuf Process 56.B:1277–1285. https://doi.org/10.1016/j.jmapro.2020.04.022

  8. Stadtfeld H (2014) Power skiving of cylindrical gears on different machine platforms. Gear Tech 31(1):52-62

  9. Erkuo G, Rongjing H, Xiaodiao H, Chenggang F (2016) A novel power skiving method using the common shaper cutter. IJAMT 83:157–165. https://doi.org/10.1007/s00170-015-7559-3

    Article  Google Scholar 

  10. Chung-Yu T, Lin PD (2018) Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center. IJAMT 95:609–623. https://doi.org/10.1007/s00170-017-1154-8

    Article  Google Scholar 

  11. Tsai C-Y (2016) Mathematical model for design and analysis of power skiving tool for involute gear cutting. Mech Mach Theory 101:195–208. https://doi.org/10.1016/j.mechmachtheory.2016.03.021

    Article  Google Scholar 

  12. Tsai C-Y (2021) Power-skiving tool design method for interference-free involute internal gear cutting. Mech Mach Theory 164. https://doi.org/10.1016/j.mechmachtheory.2021.104396

    Article  Google Scholar 

  13. Guo Z, Mao S-M, Li X-E, Ren Z-Y (2016) Research on the theoretical tooth profile errors of gears machined by skiving. Mech Mach Theory 97:1–11. https://doi.org/10.1016/j.mechmachtheory.2015.11.001

    Article  Google Scholar 

  14. Yi-Pei S, Li Y-J (2018) A novel method for producing a conical skiving tool with error-free flank faces for internal gear manufacture. J Mech Des 140(4). https://doi.org/10.1115/1.4038567

    Article  Google Scholar 

  15. Huang C-L, Fong Z-H, Chen S-D, Chang K-R (2008) Profile correction of a helical gear shaping cutter using the lengthwise-reciprocating grinding method. Mech Mach Theory 44(2):401–411. https://doi.org/10.1016/j.mechmachtheory.2008.03.009

    Article  MATH  Google Scholar 

  16. Litvin FL, Fuentes A (2004) Gear geometry and applied theory. Cambridge University Press, New York

    Book  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 51975185 and No. 52005157) and China Postdoctoral Science Foundation (No. 2021M690051).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Deng Xiaozhong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Nomenclature

m

normal module of gear

z c

teeth number of cutter

z 1

teeth number of internal gear

α

normal pressure angle of cutter

α t

Transverse pressure angle of cutter

β c

helical angle of cutter

β

helical angle of gear

α f

cone angle of cutter

x 0

Initial tooth profile shift coefficient of cutter

x

Tooth profile shift coefficient of gear

α k

Rake angle of cutter

S a

Cutting edge mark(+ 1 L, − 1 R)

S c

hand of spiral mark of cutter(+ 1 R, − 1 L)

r b

base radius of cutter

r 0

radius of reference circle of cutter

R m

radius of reference circle of gear

R max

radius of internal gear for dedendum

R min

radius of internal gear for addendum

d g

resharpening length

E t

error tolerance

γ

offset of cutter

Appendix 2

$${\boldsymbol M}_{21}=\begin{bmatrix}\cos\theta&S_a\sin\theta&0&0\\-S_a\sin\theta&\cos\theta&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}{\;\boldsymbol M}_{32}=\begin{bmatrix}\cos\theta_\mu&-S_c\sin\theta_\mu&0&0\\S_c\sin\theta_\mu&\cos\theta_\mu&0&0\\0&0&\mu&0\\0&0&0&1\end{bmatrix}$$
$${\boldsymbol M}_{43}=\begin{bmatrix}\cos\varphi_c&\sin\varphi_c&0&0\\-\sin\varphi_c&\cos\varphi_c&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}{\;\boldsymbol M}_{54}=\begin{bmatrix}1&0&0&0\\0&\cos\Sigma&-S_c\sin\Sigma&0\\0&S_c\sin\Sigma&\cos\Sigma&0\\0&0&0&1\end{bmatrix}$$
$${\boldsymbol M}_{65}=\begin{bmatrix}1&0&0&a\\0&1&0&-\gamma\\0&0&1&-d_s\\0&0&0&1\end{bmatrix}{\;\boldsymbol M}_{76}=\begin{bmatrix}\cos\varphi_1&-\sin\varphi_1&0&0\\\sin\varphi_1&\cos\varphi_1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}$$
$${\boldsymbol T}_{ba}=\begin{bmatrix}\cos\alpha_k&0&\sin\alpha_k\\0&1&0\\-\sin\alpha_k&0&\cos\alpha_k\end{bmatrix}{\;\boldsymbol T}_{3b}=\begin{bmatrix}1&0&0\\0&\cos\beta_c&S_c\sin\beta_c\\0&-S_c\sin\beta_c&\cos\beta_c\end{bmatrix}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhengyang, H., Chuang, J. & Xiaozhong, D. Research on the profile modification of power skiving tool for internal gears. Int J Adv Manuf Technol 121, 3463–3475 (2022). https://doi.org/10.1007/s00170-022-09318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09318-6

Keywords

Navigation