Skip to main content
Log in

An improved numerical integration method for prediction of milling stability using the Lagrange-Simpson interpolation scheme

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The stability prediction is usually used to avoid the unstable machining in milling process. According to the Lagrange-Simpson hybrid interpolation scheme, this paper improves a numerical integration method (NIM) to perform the milling chatter prediction accurately and efficiently. Firstly, the higher-order numerical integral formulas (NIFs) are constructed based on the Lagrange polynomial. Thus, the third-order and fourth-order NIMs are built and investigated respectively. Then, to improve the calculated performance of the NIMs, the Simpson scheme is introduced to decrease the local discretization error. Finally, the comparisons among the built NIMs and the existing discretization methods are carried out by calculating the convergence rate and the stability boundaries. Compared to the third-order NIM and the third-order full-discretization method, the proposed second-order Lagrange-Simpson NIM shows the better computational performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376

    Article  Google Scholar 

  2. Yue CX, Gao HN, Liu XL, Liang SY, Wang LH (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32(2):215–242

    Article  Google Scholar 

  3. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509

    Article  Google Scholar 

  4. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann-Manuf Technol 44(1):357–362

    Article  Google Scholar 

  5. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120(1):22–30

    Article  Google Scholar 

  6. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466

    Article  Google Scholar 

  7. Altıntas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. J Manuf Sci Eng 121(2):173–178

    Article  Google Scholar 

  8. Turner S, Merdol D, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47(9):1410–1416

    Article  Google Scholar 

  9. Li WT, Wang LP, Yu G (2020) An accurate and fast milling stability prediction approach based on the Newton-Cotes rules. Int J Mech Sci 177:105469

    Article  Google Scholar 

  10. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61:117–141

    Article  MathSciNet  Google Scholar 

  11. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341

    Article  Google Scholar 

  12. Insperger T (2010) Full-discretization and semi-discretization for milling stability prediction: Some comments. Int J Mach Tools Manuf 50(7):658–662

    Article  MathSciNet  Google Scholar 

  13. Zhan DN, Jiang SL, Niu JB (2020) Sun YW (2020) Dynamics modeling and stability analysis of five-axis ball-end milling system with variable pitch tools. Int J Mech Sci 182:105774

    Article  Google Scholar 

  14. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932

    Article  Google Scholar 

  15. Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9):2357–2368

    Article  Google Scholar 

  16. Guo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66

    Article  Google Scholar 

  17. Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48

    Article  Google Scholar 

  18. Huang C, Yang WA, Cai XL, Liu WC, You YP (2020) An efficient third-order full-discretization method for prediction of regenerative chatter stability in milling. Shock Vib 2020:9071451

    Google Scholar 

  19. Wu Y, You YP, Jiang JJ (2020) New predictor-corrector methods based on piecewise polynomial interpolation for milling stability prediction. Mach Sci Technol 24(5):688–718

    Article  Google Scholar 

  20. Zhang Y, Liu KN, Zhao WY, Zhang W, Dai F (2020) Stability analysis for milling process with variable pitch and variable helix tools by high-order full-discretization methods. Math Probl Eng 2020:4517969

    Google Scholar 

  21. Xia Y, Wan Y, Luo XC, Liu ZQ, Song QH (2021) Milling stability prediction based on the hybrid interpolation scheme of the Newton and Lagrange polynomials. Int J Adv Manuf Technol 112(5–6):1501–1512

    Article  Google Scholar 

  22. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng-Trans ASME 133(3):1–9

    Article  Google Scholar 

  23. Zhang Z, Li HG, Meng G, Liu C (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47

    Article  Google Scholar 

  24. Ozoegwu CG (2016) High order vector numerical integration schemes applied in state space milling stability analysis. Appl Math Comput 273:1025–1040

    Article  MathSciNet  Google Scholar 

  25. Tao JF, Qin CJ, Liu CL (2017) Milling stability prediction with multiple delays via the extended Adams-Moulton-Based method. Math Probl Eng 2017:7898369

    MathSciNet  MATH  Google Scholar 

  26. Zhi HY, Yan XG, Du J, Cao QC, Zhang TS (2018) Prediction of the milling stability based on the implicit Adams method. J Mech Eng 54(23):223–232

    Article  Google Scholar 

  27. Dun YC, Zhu LD, Wang SH (2020) Multi-modal method for chatter stability prediction and control in milling of thin-walled workpiece. Appl Math 80:602–624

    MathSciNet  MATH  Google Scholar 

  28. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn 4(3):31003

    Article  Google Scholar 

  29. Li H, Han P, Zhang LL (2016) Milling stability analysis based on Chebyshev segmentation. J Northeast Univ 37(4):538–542

    MathSciNet  Google Scholar 

  30. Qin CJ, Tao JF, Shi HT, Xiao DY, Li BC, Liu CL (2020) A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Precis Eng 62:244–255

    Article  Google Scholar 

  31. Xia Y, Wan Y, Luo XC, Liu ZQ, Song QH (2021) An improved numerical integration method to predict the milling stability based on the Lagrange interpolation scheme. Int J Adv Manuf Technol 116:2111–2123

    Article  Google Scholar 

Download references

Funding

This paper was funded by National Natural Science Foundation of China (Grant No. 51975336) and Key Research and Development Program of Shandong Province (Grant No. 2019JZZY010112, 2020JMRH0202).

Author information

Authors and Affiliations

Authors

Contributions

Yan Xia, Yi Wan, Guosheng Su, and Chonghai Xu contributed to the conceptualization and methodology; Yan Xia, Jin Du, and Peirong Zhang performed the investigation and analysis; Yan Xia wrote the manuscript.

Corresponding author

Correspondence to Yan Xia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Matrix E4

Appendix. Matrix E4

$${\mathbf{E}}_{4} { = }\left[ {\begin{array}{*{20}c} 0 & {} & {} & {} & {} & {} & {} \\ {251e^{{{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{1} } & {646{\mathbf{A}}_{2} } & { - 264e^{{ - {\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{3} } & {106e^{{ - 2{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{4} } & { - 19e^{{ - 3{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{4} } & {} & {} \\ {} & \ddots & \ddots & \ddots & \ddots & {} & {} \\ {} & {} & {251e^{{{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m - 3} } & {646{\mathbf{A}}_{m - 2} } & { - 264e^{{ - {\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{{\text{m - 1}}} } & {106e^{{ - 2{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m} } & { - 19e^{{ - 3{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m + 1} } \\ {} & {} & {} & {360e^{{{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m - 2} } & {360{\mathbf{A}}_{m - 1} } & {} & {} \\ {} & {} & {} & {} & {360e^{{{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m - 1} } & {360{\mathbf{A}}_{m} } & {} \\ {} & {} & {} & {} & {} & {360e^{{{\mathbf{A}}_{0} \tau }} {\mathbf{A}}_{m} } & {360{\mathbf{A}}_{m + 1} } \\ \end{array} } \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Wan, Y., Su, G. et al. An improved numerical integration method for prediction of milling stability using the Lagrange-Simpson interpolation scheme. Int J Adv Manuf Technol 120, 8105–8115 (2022). https://doi.org/10.1007/s00170-022-09245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09245-6

Keywords

Navigation