Skip to main content
Log in

The effects of processing parameters on the wedge peel strength of CF/PEEK laminates manufactured using a laser tape placement process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Manufacturing thermoplastic composites (TPCs) with excellent mechanical properties require advanced methods with reduced costs and better overall efficiencies. In this study, fiber-reinforced thermoplastic polymer composite laminates were manufactured using an automated fiber placement (AFP) manufacturing technology. The effects of processing temperature (from 320 to 500 ℃), lay-up speed (from 20 to 260 mm/s), consolidation force (from 100 to 600 N), and prepreg tape tension (from 0 to 9 N) on the quality of the resulting laminates manufactured using the laser AFP system were investigated. The interlayer bond strength was characterized using wedge peel tests on samples prepared with different process parameters. The studies were complemented by measurements of the thermal properties of the composites using differential scanning calorimetry. The optimized process parameter windows were determined to be 360 to 400 ℃ for the irradiation temperature, 140 to 160 mm/s for the lay-up speed, 100 N for the consolidation force, and 3 to 5 N for the prepreg tape tension, respectively. The microscopic analysis of the sample cross-sections and peel-damaged surfaces revealed that the different distributions of the resin matrix resulting from the different processing parameters affected the interlayer strength. These results may provide an important reference for manufacturing TPC used in aerospace, defense, and automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162

    Article  Google Scholar 

  2. Penumakala PK, Santo J, Thomas A (2020) A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos B Eng 201:108336. https://doi.org/10.1016/j.compositesb.2020.108336

    Article  Google Scholar 

  3. Olmos D, González-Benito J (2007) Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites. Eur Polymer J 43(4):1487–1500. https://doi.org/10.1016/j.eurpolymj.2007.01.004

    Article  Google Scholar 

  4. Bhattacharjee Y, Biswas S, Bose S (2020) Chapter 5 - Thermoplastic polymer composites for EMI shielding applications. In: Joseph K, Wilson R, George G (eds) Materials for potential EMI shielding applications. Elsevier, pp 73–99. https://doi.org/10.1016/B978-0-12-817590-3.00005-1

  5. Santoro D, Bellisario D, Quadrini F, Santo L (2020) Anisogrid thermoplastic composite lattice structure by innovative out-of-autoclave process. Int J Adv Manuf Technol 109(7):1941–1952. https://doi.org/10.1007/s00170-020-05671-6

    Article  Google Scholar 

  6. Saenz-Castillo D, Martín MI, García-Martínez V, Ramesh A, Battley M, Güemes A (2020) A comparison of mechanical properties and X-ray tomography analysis of different out-of-autoclave manufactured thermoplastic composites. J Reinf Plast Compos 39(19–20):703–720. https://doi.org/10.1177/0731684420924081

    Article  Google Scholar 

  7. Asim M, Jawaid M, Saba N, Ramengmawii, Nasir M, Sultan MTH (2017) 1 - Processing of hybrid polymer composites—a review. In: Thakur VK, Thakur MK, Gupta RK (eds) Hybrid Polymer Composite Materials. Woodhead Publishing, pp 1–22. https://doi.org/10.1016/B978-0-08-100789-1.00001-0

  8. Pantani R, Coccorullo I, Speranza V, Titomanlio G (2005) Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Prog Polym Sci 30(12):1185–1222. https://doi.org/10.1016/j.progpolymsci.2005.09.001

    Article  Google Scholar 

  9. Sposito A, Hoang V, DeVoe DL (2016) Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip. Lab Chip 16(18):3524–3531. https://doi.org/10.1039/C6LC00711B

    Article  Google Scholar 

  10. Pantelakis SG, Katsiropoulos CV, Labeas GN, Sibois H (2009) A concept to optimize quality and cost in thermoplastic composite components applied to the production of helicopter canopies. Compos A Appl Sci Manuf 40(5):595–606. https://doi.org/10.1016/j.compositesa.2009.02.012

    Article  Google Scholar 

  11. Baho O, Ausias G, Grohens Y, Férec J (2020) Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters. Int J Adv Manuf Technol 110(7):2105–2117. https://doi.org/10.1007/s00170-020-05876-9

    Article  Google Scholar 

  12. Chen J, Fu K, Li Y (2021) Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Compos A Appl Sci Manuf 140:106160. https://doi.org/10.1016/j.compositesa.2020.106160

    Article  Google Scholar 

  13. Dhinakaran V, Surendar KV, Hasunfur Riyaz MS, Ravichandran M (2020) Review on study of thermosetting and thermoplastic materials in the automated fiber placement process. Materials Today: Proceedings 27:812–815. https://doi.org/10.1016/j.matpr.2019.12.355

    Article  Google Scholar 

  14. Oromiehie E, Gain AK, Prusty BG (2021) Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites. Compos Struct 272:114223. https://doi.org/10.1016/j.compstruct.2021.114223

    Article  Google Scholar 

  15. Schuster A, Mayer M, Willmeroth M, Brandt L, Kupke M (2020) Inline quality control for thermoplastic automated fibre placement. Process Manuf 51:505–511. https://doi.org/10.1016/j.promfg.2020.10.071

    Article  Google Scholar 

  16. Peeters D, Deane M, O’Higgins R, Weaver PM (2020) Morphology of ply drops in thermoplastic composite materials manufactured using laser-assisted tape placement. Compos Struct 251:112638. https://doi.org/10.1016/j.compstruct.2020.112638

    Article  Google Scholar 

  17. Hosseini SA, Baran I, van Drongelen M, Akkerman R (2021) On the temperature evolution during continuous laser-assisted tape winding of multiple C/PEEK layers: the effect of roller deformation. IntJ Mater Form 14(2):203–221. https://doi.org/10.1007/s12289-020-01568-7

    Article  Google Scholar 

  18. Stokes-Griffin CM, Compston P (2016) Investigation of sub-melt temperature bonding of carbon-fibre/PEEK in an automated laser tape placement process. Compos A Appl Sci Manuf 84:17–25. https://doi.org/10.1016/j.compositesa.2015.12.019

    Article  Google Scholar 

  19. Baho O, Ausias G, Grohens Y, Barile M, Lecce L, Férec J (2021) Automated fibre placement process for a new hybrid material: a numerical tool for predicting an efficient heating law. Compos A Appl Sci Manuf 144:106360. https://doi.org/10.1016/j.compositesa.2021.106360

    Article  Google Scholar 

  20. Arns J-Y, Oromiehie E, Arns C, Prusty BG (2021) Micro-CT analysis of process-induced defects in composite laminates using AFP. Mater Manuf Process 1–10. https://doi.org/10.1080/10426914.2020.1866192

  21. Grouve WJB, Warnet LL, Rietman B, Visser HA, Akkerman R (2013) Optimization of the tape placement process parameters for carbon–PPS composites. Compos A Appl Sci Manuf 50:44–53. https://doi.org/10.1016/j.compositesa.2013.03.003

    Article  Google Scholar 

  22. Geng P, Zhao J, Wu W, Wang Y, Wang B, Wang S, Li G (2018) Effect of thermal processing and heat treatment condition on 3D printing PPS properties. Polymers 10(8). https://doi.org/10.3390/polym10080875

  23. Barbosa LCM, de Souza SDB, Botelho EC, Cândido GM, Rezende MC (2019) Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng Fail Anal 102:60–68. https://doi.org/10.1016/j.engfailanal.2019.04.032

    Article  Google Scholar 

  24. Batista NL, Olivier P, Bernhart G, Rezende MC, Botelho EC (2016) Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Mater Res 19(1):195–201. https://doi.org/10.1590/1980-5373-MR-2015-0453

    Article  Google Scholar 

  25. Dai SC, Ye L (2002) Characteristics of CF/PEI tape winding process with on-line consolidation. Compos A Appl Sci Manuf 33(9):1227–1238. https://doi.org/10.1016/S1359-835X(02)00083-0

    Article  Google Scholar 

  26. Hou M, Ye L, Lee HJ, Mai YW (1998) Manufacture of a carbon-fabric-reinforced polyetherimide (CF/PEI) composite material. Compos Sci Technol 58(2):181–190. https://doi.org/10.1016/S0266-3538(97)00117-6

    Article  Google Scholar 

  27. Çelik O, Peeters D, Dransfeld C, Teuwen J (2020) Intimate contact development during laser assisted fiber placement: microstructure and effect of process parameters. Compos A Appl Sci Manuf 134:105888. https://doi.org/10.1016/j.compositesa.2020.105888

    Article  Google Scholar 

  28. Doll G (2021) Thermoplastic composites technologies for future aircraft structures. In: Liebl J (eds) Vehicles of tomorrow 2019. Proceedings. Springer Vieweg, Wiesbaden, pp 129–138. https://doi.org/10.1007/978-3-658-29701-5_11

  29. Kollmannsberger A, Lichtinger R, Hohenester F, Ebel C, Drechsler K (2017) Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix. J Thermoplast Compos Mater 31:089270571773830. https://doi.org/10.1177/0892705717738304

    Article  Google Scholar 

  30. Levy A, Heider D, Tierney J, Gillespie JW (2013) Inter-layer thermal contact resistance evolution with the degree of intimate contact in the processing of thermoplastic composite laminates. J Compos Mater 48(4):491–503. https://doi.org/10.1177/0021998313476318

    Article  Google Scholar 

  31. Stokes-Griffin CM, Compston P (2015) The effect of processing temperature and placement rate on the short beam strength of carbon fibre–PEEK manufactured using a laser tape placement process. Compos A Appl Sci Manuf 78:274–283. https://doi.org/10.1016/j.compositesa.2015.08.008

    Article  Google Scholar 

  32. Stokes-Griffin CM, Kollmannsberger A, Compston P, Drechsler K (2019) The effect of processing temperature on wedge peel strength of CF/PA6 laminates manufactured in a laser tape placement process. Compos A Appl Sci Manuf 121:84–91. https://doi.org/10.1016/j.compositesa.2019.02.011

    Article  Google Scholar 

  33. Venkatesan C, Velu R, Vaheed N, Raspall F, Tay T-E, Silva A (2020) Effect of process parameters on polyamide-6 carbon fibre prepreg laminated by IR-assisted automated fibre placement. Int J Adv Manuf Technol 108(4):1275–1284. https://doi.org/10.1007/s00170-020-05230-z

    Article  Google Scholar 

  34. Del Castillo DS, Martin I, Rodriguez-Lence F, Guemes A (2016) On-line monitoring of a laser-assisted fiber placement process with CFR thermoplastic matrix by using fiber Bragg gratings. In: 8th European workshop on structural health monitoring (EWSHM 2016), July 5-8, 2016 in Bilbao, Spain. https://www.ndt.net/events/EWSHM2016/app/content/Paper/426_SaenzdelCastillo.pdf

  35. Comer AJ, Ray D, Obande WO, Jones D, Lyons J, Rosca I, O’ Higgins RM, McCarthy MA, (2015) Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave. Compos A Appl Sci Manuf 69:10–20. https://doi.org/10.1016/j.compositesa.2014.10.003

    Article  Google Scholar 

  36. Azab M, Parry G, Estevez R (2020) An analytical model for DCB/wedge tests based on Timoshenko beam kinematics for accurate determination of cohesive zone lengths. Int J Fract 222(1):137–153. https://doi.org/10.1007/s10704-020-00438-2

    Article  Google Scholar 

  37. Yan T, Yan F, Li S, Li M, Liu Y, Zhang M, Jin L, Shang L, Liu L, Ao Y (2020) Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent. Compos B Eng 199:108258. https://doi.org/10.1016/j.compositesb.2020.108258

    Article  Google Scholar 

  38. Lu C, Xu N, Zheng T, Zhang X, Lv H, Lu X, Xiao L, Zhang D (2019) The optimization of process parameters and characterization of high-performance CF/PEEK composites Prepared by Flexible CF/PEEK Plain Weave Fabrics. Polymers 11 (1). https://doi.org/10.3390/polym11010053

  39. Yan M, Tian X, Peng G, Li D, Zhang X (2018) High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol 165:140–147. https://doi.org/10.1016/j.compscitech.2018.06.023

    Article  Google Scholar 

  40. Satheesh B, Tonejc M, Potakowskyj L, Pletz M, Fauster E, Kaynak B, Schledjewski R (2018) Peel strength characterisation on ply/ply interface using wedge and T-peel/pull-type tests. Polym Polym Compos 26(8–9):431–445. https://doi.org/10.1177/0967391118809205

    Article  Google Scholar 

  41. Schäfer PM (2017) Consolidation of carbon fiber reinforced polyamide 6 tapes using laser-assisted tape placement. Dissertation, Technische Universität München, München

Download references

Funding

This study was financially supported by the National Nature Science Foundation of China (Grant: 52075424 and 51875440).

Author information

Authors and Affiliations

Authors

Contributions

Chenping Zhang: conceptualization, methodology, writing - original draft. Yugang Duan: methodology, writing - review and editing, supervision. Hong Xiao: writing - review and editing. Ben Wang: writing - review and editing. Yueke Ming: methodology, writing - review and editing. Yansong Zhu: investigation. Fugan Zhang: investigation.

Corresponding author

Correspondence to Yugang Duan.

Ethics declarations

Ethics approval and consent to participate

No applicable.

Consent for publication

The authors consented to publish this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Duan, Y., Xiao, H. et al. The effects of processing parameters on the wedge peel strength of CF/PEEK laminates manufactured using a laser tape placement process. Int J Adv Manuf Technol 120, 7251–7262 (2022). https://doi.org/10.1007/s00170-022-09181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09181-5

Keywords

Navigation