Skip to main content
Log in

Research on roundness error consistency model for crank journal cylindrical grinding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cylindrical grinding is an important way to form the external shape error of the crank journal, and the accuracy consistency directly affects the interchangeability of products. To study the accuracy consistency of crank journal, a dynamic model of the grinding wheel-crankshaft grinding system based on Timoshenko beam is established, and the grinding transition process simulation algorithm with iterative convergence of grinding force-transient grinding amount cycle adapted to the model is proposed, which realizes the simulation of the roundness of the crank journal coupled with the process parameters of the grinding system. Aiming at the grinding position of each crank journal, the grinding roundness of five crank journals is simulated, respectively. On this basis, the crank journal roundness consistency prediction model is established, and the effectiveness of the prediction model is verified by field experiments. Finally, the influence of grinding parameters on the consistency of the roundness of crank journal is studied. The research conclusion can provide a reference for the grinding accuracy consistency design of this type of crank journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Liu HF, Zhou XZ, Qiu-Ming YU (2015) Modes and causes of torsional fatigue failure of automobile engine crankshafts. Fail Ana Prev 42(24):8606–8616. https://doi.org/10.1039/c3dt00115f

    Article  Google Scholar 

  2. Kareem B (2017) Mechanical failure analysis of automobile crankshafts under service reconditioned modelling approach. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2017.05.036

    Article  Google Scholar 

  3. Shi X, Xiu S, Meng Z (2019) Research on machining topography of point grinding based on correlation function method. Proc Inst Mech Eng Part B J Eng Manuf 233:850–862. https://doi.org/10.1177/0954405418755827

    Article  Google Scholar 

  4. Fan ZG, Gong YD, Dong Y (2011) Research on surface morphology of three-dimensional in CNC cylindrical grinding. Adv Mater Res 299–300:945–948. https://doi.org/10.4028/www.scientific.net/AMR.299-300.945

    Article  Google Scholar 

  5. Yuan J, Yao W, Zhao P (2015) Kinematics and trajectory of both-sides cylindrical lapping process in planetary motion type. Int J Mach Tools Manuf 92:60–71. https://doi.org/10.1016/j.ijmachtools.2015.02.004

    Article  Google Scholar 

  6. Yao W, Yuan J, Zhou F (2016) Trajectory analysis and experiments of both-sides cylindrical lapping in eccentric rotation. Int J Adv Manuf Technol 88:1–11. https://doi.org/10.1007/s00170-016-8980-y

    Article  Google Scholar 

  7. Yuan JL, Lou FY, Wang ZW (2004) Research on ultra-precision machining technology for KTP. Mater Sci Forum 473–476. https://doi.org/10.4028/www.scientific.net/MSF.471-472.473

    Article  Google Scholar 

  8. Lv BH, Yuan JL, Yao YX (2006) Study on wear mode of silicon nitride balls in lapping process. Key Eng Mater 403–407. https://doi.org/10.4028/www.scientific.net/KEM.304-305.403

    Article  Google Scholar 

  9. Wang WF, Gao PF, Wen DH (2010) Theoretical analysis and uniformity of trajectories in lapping process. Adv Mater Res 102:625–629. https://doi.org/10.4028/www.scientific.net/AMR.102-104.625

    Article  Google Scholar 

  10. Zhang J, Wang WF, Wen DH (2011) Methods of evaluation the uniformity in the lapping process. Adv Mater Res 215:47–52. https://doi.org/10.4028/www.scientific.net/AMR.215.47

    Article  Google Scholar 

  11. Chen S, Yang S, Liao Z (2021) Curvature effect on surface generation and uniform scallop height control in normal grinding of optical components. Opt Express 29(6). https://doi.org/10.1364/OE.418599

    Article  Google Scholar 

  12. Liu Z, Jin Z, Wu D (2019) Investigation on material removal uniformity in electrochemical mechanical polishing by polishing pad with holes. Ecs J Solid State Sci Technol 8(5):3047–3052. https://doi.org/10.1149/2.0071905jss

    Article  Google Scholar 

  13. Wei H, Peng C, Hang G (2018) On establishment and validation of a new predictive model for material removal in abrasive flow machining. Int J Mach Tools Manuf 138. https://doi.org/10.1016/j.ijmachtools.2018.12.003

    Article  Google Scholar 

  14. Zhou W, Tang J, Shao W (2020) Study on surface generation mechanism and roughness distribution in gear profile grinding. Int J Mech Sci 187. https://doi.org/10.1016/j.ijmecsci.2020.105921

    Article  Google Scholar 

  15. Pavlenko I, Saga M, Kuric I (2020) Parameter identification of cutting forces in crankshaft grinding using artificial neural networks. Materials 13(23):5357. https://doi.org/10.3390/ma13235357

    Article  Google Scholar 

  16. Yu H, Zhang W, Lyu Y (2019) Research on grinding forces of a bionic engineered grinding wheel. J Manuf Process 48:185–190. https://doi.org/10.1016/j.jmapro.2019.10.031

    Article  Google Scholar 

  17. Rudrapati R, Pal PK, Bandyopadhyay A (2016) Modeling and optimization of machining parameters in cylindrical grinding process. Int J Adv Manuf Technol 9:2167–2182. https://doi.org/10.1007/s00170-015-7500-9

    Article  Google Scholar 

  18. Fujiwara T, Tsukamoto S, Miyagawa M (2005) Analysis of the grinding mechanism with wheel head oscillating type CNC crankshaft pin grinder. Key Eng Mater 291:163–170. https://doi.org/10.4028/www.scientific.net/KEM.291-292.163

    Article  Google Scholar 

  19. Xiong W, Chen J, Ding W (2019) Dual-rotor coupling model and simulation algorithm for round journal grinding process. Chin J Mech Eng 55(21):170–177. https://doi.org/10.3901/JME.2019.21.170

    Article  Google Scholar 

  20. Zeng X, Xiong W, Sun W (2021) Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal. Int J Adv Manuf Technol 1–10. https://doi.org/10.1007/s00170-021-06761-9

    Article  Google Scholar 

  21. Hou Z, Xiong W, Lang L (2016) Study on the influence of the journal shape error for hydrostatic spindle rotational error motion. Chin J Mech Eng 52(15):147–154. https://doi.org/10.3901/JME.2016.15.147

    Article  Google Scholar 

  22. Zhang Y, Yang B (2020) Medium-frequency vibration analysis of Timoshenko beam structures. Int J Struct Stab Dyn 2041009. https://doi.org/10.1142/S0219455420410096

    Article  MathSciNet  Google Scholar 

  23. Nelson HD (1980) A finite rotating shaft element using Timoshenko beam theory. J Mech Des 102:793–803. https://doi.org/10.1115/1.3254824

    Article  Google Scholar 

  24. Lai HY, Jywe WY, Chen CK (2000) Precision modeling of form errors for cylindricity evaluation using genetic algorithms. Precis Eng 24:310–319. https://doi.org/10.1016/S0141-6359(00)00041-6

    Article  Google Scholar 

  25. Kumar C, Sarangi S (2017) Dynamic response of unbalanced rigid rotor bearing system with non-linear hydrodynamic force. J Comput Nonlinear Dyn 13(9). https://doi.org/10.1115/1.4037995

    Article  Google Scholar 

  26. Chiu N, Malkin S (1993) Computer simulation for cylindrical plunge grinding. CIRP Ann Manuf Technol 42(1):383–387. https://doi.org/10.1016/S0007-8506(07)62467-6

    Article  Google Scholar 

  27. Zhou J, Zhou Y (2007) A new simple method of implicit time integration for dynamic problems of engineering structures. Acta Mech Sin 1(v.23):95–103. https://doi.org/CNKI:SUN:AMSI.0.2007-01-010

    MATH  Google Scholar 

  28. Lei X, Gao Z, Duan M (2015) Method for cylindricity error evaluation using geometry optimization searching algorithm. Precis Eng 44(9):1556–1563. https://doi.org/10.1016/j.measurement.2011.06.010

    Article  Google Scholar 

  29. Anandan KP, Ozdoganlar OB (2013) An ldv-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (uhs) micromachining spindles. Precis Eng 37(1):172–186. https://doi.org/10.1016/j.precisioneng.2012.08.001

    Article  Google Scholar 

  30. Fricker DC, Speight A, Pearce TRA (2006) The modelling of roundness in cylindrical plunge grinding to incorporate wave shift and external vibration effects. Proc Inst Mech Eng Part B J Eng Manuf 220(8):1347–1358. https://doi.org/10.1243/09544054JEM509

    Article  Google Scholar 

  31. Pearce TRA, Flicker DC, Speight A (2007) The effect of workpiece roundness of the run-out of CBN electroplated grinding wheels. Key Eng Mater 329:483–488. https://doi.org/10.4028/www.scientific.net/KEM.329.483

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51575173) and the Science and Technology Major Project-Advanced NC Machine Tools &Basic Manufacturing Equipment (Grant No. 2016ZX04003001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Xiong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Xiong, W., Ye, H. et al. Research on roundness error consistency model for crank journal cylindrical grinding. Int J Adv Manuf Technol 120, 3705–3717 (2022). https://doi.org/10.1007/s00170-022-08738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08738-8

Keywords

Navigation