Skip to main content
Log in

Formability and failure response of AA5052-H32 thin sheets with friction stir spot welds during the shock tube-based impact forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, both the experimental and numerical investigations are carried out to understand the dynamic forming behavior of friction stir spot-welded (FSSW) sheet made of AA 5052-H32 sheets of 1 mm thickness using a shock tube. A hemispherical end nylon striker is propelled at high velocity to deform the FSSW sheet in biaxial mode of deformation. Furthermore, the effect of tool rotational speed and plunge speed on the FSSW joint is studied. During this analysis, a new strategy is followed to evaluate the rate-dependent flow stress–strain properties, which are incorporated during FE simulation using FE code, DEFORM-3D. Tensile test data obtained from the unwelded section of the deformed FSSW sheet is fit to Modified Johnson–Cook (MJC) model, and the rate-dependent properties are identified. In the case of the spot-welded region, a hardness-based multiplying factor is generated to evaluate the stress–strain data by fitting to MJC model. The effect of tool rotational speed and plunge speed on the welding and forming outputs are presented. Temperature evolution during FSSW is validated with the experimental data, and good correlation is obtained. The predicted material flow visualization during FSSW gives insight into the mixing of the material during the joint formation. The results agree with available findings. Various forming outputs such as effective strain distribution, necking height, and the failure pattern are predicted using MJC model in combination with Freudenthal damage model, and the results have good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and material

We confirm that data is open and transparent.

References

  1. Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91:1851–1866. https://doi.org/10.1007/s00170-016-9861-0

    Article  Google Scholar 

  2. Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49:814–823. https://doi.org/10.1016/j.ijmachtools.2009.06.001

    Article  Google Scholar 

  3. Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51:173–183. https://doi.org/10.1007/s00170-010-2618-2

    Article  Google Scholar 

  4. Babu S, Sankar VS, Ram GDJ et al (2013) Microstructures and mechanical properties of friction stir spot welded aluminum alloy AA2014. J Mater Eng Perform 22:71–84. https://doi.org/10.1007/s11665-012-0218-z

    Article  Google Scholar 

  5. Bozzi S, Helbert-Etter AL, Baudin T et al (2010) Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds. J Mater Process Technol 210:1429–1435. https://doi.org/10.1016/j.jmatprotec.2010.03.022

    Article  Google Scholar 

  6. Yuan W, Mishra RS, Carlson B et al (2012) Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy. Mater Sci Eng A 543:200–209. https://doi.org/10.1016/j.msea.2012.02.075

    Article  Google Scholar 

  7. Ji S, Wang Y, Zhang J, Li Z (2017) Influence of rotating speed on microstructure and peel strength of friction spot welded 2024–T4 aluminum alloy. Int J Adv Manuf Technol 90:717–723. https://doi.org/10.1007/s00170-016-9398-2

    Article  Google Scholar 

  8. Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys. Fatigue Fract Eng Mater Struct 30:143–148. https://doi.org/10.1111/j.1460-2695.2006.01096.x

    Article  Google Scholar 

  9. Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523. https://doi.org/10.1016/j.jmatprotec.2017.10.016

    Article  Google Scholar 

  10. Noh W, Koh Y, Chung K et al (2018) Influence of dynamic loading on failure behavior of spot welded automotive steel sheets. Int J Mech Sci 144:407–426. https://doi.org/10.1016/j.ijmecsci.2018.06.009

    Article  Google Scholar 

  11. Kesharwani RK, Basak S, Panda SK, Pal SK (2017) Improvement in limiting drawing ratio of aluminum tailored friction stir welded blanks using modified conical tractrix die. J Manuf Process 28:137–155. https://doi.org/10.1016/j.jmapro.2017.06.002

    Article  Google Scholar 

  12. Ramulu PJ, Narayanan RG, Kailas SV (2013) Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth. Int J Adv Manuf Technol 69:2757–2772. https://doi.org/10.1007/s00170-013-5245-x

    Article  Google Scholar 

  13. Kim D, Lee W, Kim J et al (2010) Formability evaluation of friction stir welded 6111–T4 sheet with respect to joining material direction. Int J Mech Sci 52:612–625. https://doi.org/10.1016/j.ijmecsci.2010.01.001

    Article  Google Scholar 

  14. Parente M, Safdarian R, Santos AD et al (2016) A study on the formability of aluminum tailor welded blanks produced by friction stir welding. Int J Adv Manuf Technol 83:2129–2141. https://doi.org/10.1007/s00170-015-7950-0

    Article  Google Scholar 

  15. Kim D, Lee W, Kim J et al (2010) Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part II–Formability. Int J Solids Struct 47:1063–1081. https://doi.org/10.1016/j.ijsolstr.2009.12.021

    Article  MATH  Google Scholar 

  16. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323. https://doi.org/10.1016/j.ijsolstr.2009.12.021

    Article  Google Scholar 

  17. Feng F, Li J, Huang L et al (2021) Formability enhancement of 5052 aluminium alloy sheet in electromagnetic impaction forming. Int J Adv Manuf Technol 112:2639–2655. https://doi.org/10.1007/s00170-020-06483-4

    Article  Google Scholar 

  18. Sun X, Khaleel MA (2007) Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals. Int J Impact Eng 34:1668–1682. https://doi.org/10.1016/j.ijimpeng.2006.09.092

    Article  Google Scholar 

  19. Ambriz RR, Froustey C, Mesmacque G (2013) Determination of the tensile behavior at middle strain rate of AA6061-T6 aluminum alloy welds. Int J Impact Eng 60:107–119. https://doi.org/10.1016/S1003-6326(20)65239-6

    Article  Google Scholar 

  20. Barik SK, Narayanan RG, Sahoo N (2020) Forming response of AA5052–H32 sheet deformed using a shock tube. Trans Nonferrous Met Soc China 30:603–618. https://doi.org/10.1016/S1003-6326(20)65239-6

    Article  Google Scholar 

  21. Stoffel M, Schmidt R, Weichert D (2001) Shock wave-loaded plates. Int J Solids Struct 38:7659–7680. https://doi.org/10.1016/S0020-7683(01)00038-5

    Article  MATH  Google Scholar 

  22. Justusson B, Pankow M, Heinrich C et al (2013) Use of a shock tube to determine the bi-axial yield of an aluminum alloy under high rates. Int J Impact Eng 58:55–65. https://doi.org/10.1016/j.ijimpeng.2013.01.012

    Article  Google Scholar 

  23. Chen D-Y, Xu Y, Zhang S-H et al (2021) A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming. J Mater Process Technol 287:116553. https://doi.org/10.1016/j.jmatprotec.2019.116553

    Article  Google Scholar 

  24. Barik SK, Narayanan RG, Sahoo N (2020) Prediction of forming of AA 5052–H32 sheets under impact loading and experimental validation. J Mater Eng Perform 29:3941–3960. https://doi.org/10.1007/s11665-020-04884-w

    Article  Google Scholar 

  25. Ray N, Jagadeesh G, Suwas S (2015) Response of shock wave deformation in AA5086 aluminum alloy. Mater Sci Eng A 622:219–227.https://doi.org/10.1016/j.msea.2014.10.010

  26. Barik SK, Narayanan GR, Sahoo N (2021) Failure strain and fracture prediction during shock tube impact forming of AA 5052–H32 sheet. J Eng Mater Technol 143:031009. https://doi.org/10.1115/1.4050703

    Article  Google Scholar 

  27. Zhang Z, Yang X, Zhang J et al (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32:4461–4470. https://doi.org/10.1016/j.matdes.2011.03.058.

  28. Barik SK, Narayanan RG, Sahoo N (2019) Experimental investigation on the forming of AA 5052-H32 sheet using a rigid-body-based impact in a shock tube. In: Advances in Forming, Machining and Automation. Springer, pp 79–90. https://doi.org/10.1007/978-981-32-9417-2_6.

  29. Zhao Y, Liu H, Yang T et al (2016) Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy. Int J Adv Manuf Technol 83:1467–1475. https://doi.org/10.1007/s00170-015-7681-2

    Article  Google Scholar 

  30. Bajpei T, Chelladurai H, Ansari MZ (2017) Experimental investigation and numerical analyses of residual stresses and distortions in GMA welding of thin dissimilar AA5052-AA6061 plates. J Manuf Process 25:340–350. https://doi.org/10.1016/j.jmapro.2016.12.017

    Article  Google Scholar 

  31. Fluhrer J (2007) DEFORM 3D Version 6.1 User’s Manual. Sci Form Technol Corp Ohio

  32. Song P, Li W, Wang X, Xu W (2019) Study on mechanical properties and constitutive model of 5052 aluminium alloy. Mater Sci Technol 35:916–924. https://doi.org/10.1016/j.jmapro.2016.12.017

    Article  Google Scholar 

  33. Khodko O, Zaytsev V, Sukaylo V et al (2015) Experimental and numerical investigation of processes that occur during high velocity hydroforming technologies: an example of tubular blank free bulging during hydrodynamic forming. J Manuf Process 20:304–313. https://doi.org/10.1016/j.jmapro.2015.06.016

    Article  Google Scholar 

  34. Deng H, Mao Y, Li G, Cui J (2019) A study of electromagnetic free forming in AA5052 using digital image correlation method and FE analysis. J Manuf Process 37:595–605. https://doi.org/10.1016/j.jmapro.2018.12.033

    Article  Google Scholar 

  35. Wagoner RH, Chenot J-L (1996) Fundamentals of metal forming. John Wiley & Sons Inc, New York

    Google Scholar 

  36. Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based fem model for friction stir welding—model development. Mater Sci Eng A 419:389–396. https://doi.org/10.1016/j.msea.2005.09.040

    Article  Google Scholar 

  37. Yang Q, Mironov S, Sato YS, Okamoto K (2010) Material flow during friction stir spot welding. Mater Sci Eng A 527:4389–4398. https://doi.org/10.1016/j.msea.2010.03.082

    Article  Google Scholar 

  38. Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al-Mg alloy. Mater Sci Eng A 527:1292–1298. https://doi.org/10.1016/j.msea.2009.11.056

    Article  Google Scholar 

  39. Takuda H, Mori K, Hatta N (1999) The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol 95:116–121. https://doi.org/10.1016/S0924-0136(99)00275-7

    Article  Google Scholar 

Download references

Funding

The authors are grateful to Aeronautical Research and Development Board (AR & DB) India for the financial support towards the fabrication of the shock tube facility at IIT Guwahati.

Author information

Authors and Affiliations

Authors

Contributions

Saibal Kanchan Barik conceived and designed the study, performed the experiments and numerical simulations, performed the analysis, and wrote the paper. R. Ganesh Narayanan conceived and designed the study, and contributed to the analysis, final proof reading. Niranjan Sahoo conceived and designed the study, and contributed to the analysis, final proof reading.

Corresponding author

Correspondence to Saibal Kanchan Barik.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Identification of stress ratio and strain ratio for plane strain condition with no planar anisotropy

Appendix: Identification of stress ratio and strain ratio for plane strain condition with no planar anisotropy

Hill’s 1948 yield criterion for anisotropic materials in principal coordinate system is expressed as [39]:

$$F{\left( {{\sigma_2} - {\sigma_3}} \right)^2} + G{\left( {{\sigma_3} - {\sigma_1}} \right)^2} + H{\left( {{\sigma_1} - {\sigma_2}} \right)^2} = \frac{2}{3}\left( {F + G + H} \right){\bar \sigma^2}$$
(9)

where F, G, and H are the anisotropy parameters; \({\sigma_i}\) represents the principal stress.

During plastic deformation, the stress and the strain are related by the flow rule,

$$d{\varepsilon_{ij}} = d\lambda \frac{{\partial f({\sigma_{ij}})}}{{\partial {\sigma_{ij}}}}$$
(10)

where \(d\lambda\) is an arbitrary constant.

The principal strains (\(d{\varepsilon_1},d{\varepsilon_2},d{\varepsilon_3}\)) for plane stress condition can be obtained by differentiating Eq. (10) with respect to the principal stresses and substituting into the flow rule.

$$\begin{array}{l}d{\varepsilon_1} = d\lambda \left[ {G\left( {{\sigma_1} - {\sigma_3}} \right) + H\left( {{\sigma_1} - {\sigma_2}} \right)} \right]\\d{\varepsilon_2} = d\lambda \left[ {F\left( {{\sigma_2} - {\sigma_3}} \right) + H\left( {{\sigma_2} - {\sigma_1}} \right)} \right]\\d{\varepsilon_3} = d\lambda \left[ {G\left( {{\sigma_3} - {\sigma_1}} \right) + F\left( {{\sigma_3} - {\sigma_2}} \right)} \right]\end{array}$$
(11)

Assuming plane stress condition for thin sheet, Hill’s 1948 yield criterion can be demonstrated as:

$$F{\left( {\sigma_2} \right)^2} + G{\left( {\sigma_1} \right)^2} + H{\left( {{\sigma_1} - {\sigma_2}} \right)^2} = \frac{2}{3}\left( {F + G + H} \right){\bar \sigma^2}$$
(12)

By substituting principal stress ratio, \(\alpha = {{\sigma_2} \mathord{\left/ {\vphantom {{\sigma_2} {\sigma_1}}} \right. \kern-\nulldelimiterspace} {\sigma_1}}\) into Eq. (12)

$$F{\left( \alpha \right)^2} + G + H{\left( {1 - \alpha } \right)^2} = \frac{2}{3}\left( {F + G + H} \right)\frac{{{{\bar \sigma }^2}}}{\sigma_1^2}$$
(13)

The principal strain ratio, \(\beta = {{d{\varepsilon_2}} \mathord{\left/ {\vphantom {{d{\varepsilon_2}} {d{\varepsilon_1}}}} \right. \kern-\nulldelimiterspace} {d{\varepsilon_1}}}\) for plane stress condition, can be expressed as:

$$\beta = \frac{{F(\alpha ) - H\left( {1 - \alpha } \right)}}{{G + H\left( {1 - \alpha } \right)}}$$
(14)

Assuming plane strain condition (β = 0), α will be expressed as:

$$\alpha = \frac{H}{F + H}$$
(15)

For no planar anisotropy condition (\(r = {r_0} = {r_{45}} = {r_{90}}\)), Hill’s anisotropic constants (F, G, and H) can be correlated as F = G and H = rG.

Substituting F, G, and H into Eq. (12), the stress ratio can be obtained as:

$$\frac{{\sigma_1}}{\bar \sigma } = \sqrt {\frac{{2\left( {2 + r} \right)\left( {1 + r} \right)}}{{3\left( {1 + 2r} \right)}}}$$
(16)

The principle of equivalent plastic work for plane stress condition is defined as:

$$\bar \sigma d\bar \varepsilon = {\sigma_1}d{\varepsilon_1} + {\sigma_2}d{\varepsilon_2}$$
(17)

The \({\raise0.7ex\hbox{${d\bar \varepsilon }$} \!\mathord{\left/ {\vphantom {{d\bar \varepsilon } {d{\varepsilon_1}}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${d{\varepsilon_1}}$}}\) can be derived as:

$$\frac{d\bar \varepsilon }{{d{\varepsilon_1}}} = \sqrt {\frac{{2\left( {2 + r} \right)\left( {1 + r} \right)}}{{3\left( {1 + 2r} \right)}}}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Narayanan, R.G. & Sahoo, N. Formability and failure response of AA5052-H32 thin sheets with friction stir spot welds during the shock tube-based impact forming. Int J Adv Manuf Technol 119, 7921–7945 (2022). https://doi.org/10.1007/s00170-021-08566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08566-2

Keywords

Navigation