Skip to main content

Advertisement

Log in

WED-machining performance by reciprocating molybdenum wire on Inconel 718 with water or hydrocarbon dielectrics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The Inconel 718 superalloy is widely used in petrochemical, energy, aerospace, nuclear power plants, and many other applications where components are subjected to high temperatures and corrosion environments. This alloy is most used due to its combination of good mechanical properties and relatively low cost compared to other supperalloys. Nevertheless, its mechanical properties and workpieces with very complex geometries are difficult to be manufactured by conventional machining properties. It is observed that notch wear at the cutting tool tip and superabrasive carbides in Inconel 718 promote high abrasive cutting tool wear; high diffusion wear happens at cutting tool, continuous and tough chips cause degradation of the cutting tool, and both high temperature and thermal gradients occur at the cutting tools due to low thermal diffusivity of these alloys. Wire electrical discharge machining is a precision non-traditional machining process that appears as an alternative to the conventional machining process for any hard and electrically conductive material. The objective of this research work is to compare the technological performance of WED-Machining Inconel 718 using a reciprocating molybdenum wire electrode using two types of dielectric fluids (deionized water and 8% emulsion hydrocarbon) under different electrical parameters. Therefore, it presents the investigation of the discharge energy influences for five different levels of discharge durations and varying the wire run-off speed. Technological aspects labeled material cutting rate, kerf width, wire feed rate, and surface integrity were evaluated. The results revealed that the hydrocarbon presented a higher cutting rate than deionized water independent of the discharge energy applied. The hydrocarbon dielectric presented the best results for the wire feed rate compared to water fluid. The largest kerf width was attained for the deionized water, and the surface roughness increase is more pronounced for deionized water than hydrocarbon dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

d w :

Wire diameter (mm)

\({\overline{i}}_{e}\) :

Discharge current (A)

\({\overline{u}}_{e}\) :

Discharge voltage (V)

t e :

Discharge duration (µs)

t i :

Pulse duration (µs)

t o :

Pulse interval time (µs)

t p :

Pulse cycle time (µs)

f p :

Pulse frequency (fp = ti/tp)

Ra:

Average roughness-two-dimensional (µm)

Sa:

Average height of the selected area-three-dimensional (µm)

P in :

Dielectric inlet pressure (MPa)

W e :

Discharge energy (J)

W s :

Wire run-off speed (m/s)

Λc :

Cut-off sampling length (µm

References

  1. Parida AK, Maity K (2018) Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng Sci Technol Int J 21:364–370. https://doi.org/10.1016/j.jestch.2018.03.018

    Article  Google Scholar 

  2. Zink ES, Bourdon D, Neias Junior V et al (2020) Study of manufacturing processes for liquid rocket turbopump impellers: Test and analysis. J Aerosp Technol Manag 12:1–14. https://doi.org/10.5028/jatm.v12.1099

    Article  Google Scholar 

  3. Sharma V, Misra JP Singhal P (2019) Multi-optimization of process parameters for Inconel 718 while Die-Sink EDM using multi-criterion decision making methods. J Phys Conf Ser 1240. https://doi.org/10.1088/1742-6596/1240/1/012166

  4. Gustafsson D, Moverare JJ, Johansson S et al (2011) Influence of high temperature hold times on the fatigue crack propagation in Inconel 718. Int J Fatigue 33:1461–1469. https://doi.org/10.1016/j.ijfatigue.2011.05.011

    Article  Google Scholar 

  5. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45:1353–1367. https://doi.org/10.1016/j.ijmachtools.2005.02.003

    Article  Google Scholar 

  6. Johny A, Thiagarajan C (2020) Investigation of surface integrity and it’s optimization on pure titanium using molybdenum wire by reciprocated travelling WEDM — a review. Mater Today Proc 33:2581–2584. https://doi.org/10.1016/j.matpr.2019.12.251

    Article  Google Scholar 

  7. Li L, Li ZY, Wei XT, Cheng X (2015) Machining characteristics of inconel 718 by sinking-EDM and wire-EDM. Mater Manuf Process 30:968–973. https://doi.org/10.1080/10426914.2014.973579

    Article  Google Scholar 

  8. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259. https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  9. Mendes LA, Amorim FL, Weingaertner WL (2014) Automated system for the measurement of spark current and electric voltage in wire EDM performance. J Brazilian Soc Mech Sci Eng 37:123–131. https://doi.org/10.1007/s40430-014-0171-x

    Article  Google Scholar 

  10. Klocke F, König W (2007) Fertigungsverfahren 3. Abtragen, Generieren und Lasermaterialbearbeitung. Springer Berlin Heidelberg, Berlin

  11. Reolon LW, Laurindo CAH, Torres RD, Amorim FL (2019) WEDM performance and surface integrity of Inconel alloy IN718 with coated and uncoated wires. Int J Adv Manuf Technol 100:1981–1991. https://doi.org/10.1007/s00170-018-2828-6

    Article  Google Scholar 

  12. Dabade UA, Karidkar SS (2016) Analysis of response variables in WEDM of Inconel 718 using Taguchi technique. Procedia CIRP 41:886–891. https://doi.org/10.1016/j.procir.2016.01.026

    Article  Google Scholar 

  13. Werner A (2016) Method for enhanced accuracy in machining curvilinear profiles on wire-cut electrical discharge machines. Precis Eng 44:75–80. https://doi.org/10.1016/j.precisioneng.2015.10.004

    Article  Google Scholar 

  14. Carlini GC, Xavier FA, Weingaertner WL et al (2018) Análise de parâmetros na remoção de metal duro utilizando WEDM. An do X Congr Nac Eng Mecânica. https://doi.org/10.26678/ABCM.CONEM2018.CON18-1266

  15. Niamat M, Sarfraz S, Aziz H et al (2017) Effect of different dielectrics on material removal rate, electrode wear rate and microstructures in EDM. Procedia CIRP 60:2–7. https://doi.org/10.1016/j.procir.2017.02.023

    Article  Google Scholar 

  16. Kunieda M, Kitamura T (2018) Observation of difference of EDM gap phenomena in water and oil using transparent electrode. Procedia CIRP 68:342–346. https://doi.org/10.1016/j.procir.2017.12.065

    Article  Google Scholar 

  17. Carlini GC, Amorim FL, Weingaertner WL (2019) Influence of different grades of CuW electrodes when die sinking ED-machining of cemented carbide. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03982-x

    Article  Google Scholar 

  18. Klocke F (2009) Manufacturing processes 2, RWTH. Springer Berlin Heidelberg, Berlin, Heidelberg

  19. ASTM (2018) ASTM B387-18. Standard specificstandard specification for molybdenum and molybdenum alloy bar, rod, and wire, ASTM International, West Conshohocken, PA, 2018

  20. Baldin V, Baldin CRB, Machado AR, Amorim FL (2020) Machining of Inconel 718 with a defined geometry tool or by electrical discharge machining. J Brazilian Soc Mech Sci Eng 42:1–14. https://doi.org/10.1007/s40430-020-02358-7

    Article  Google Scholar 

  21. Yue X, Yang X, Kunieda M (2018) Influence of metal vapor jets from tool electrode on material removal of workpiece in EDM. Precis Eng 53:278–288. https://doi.org/10.1016/j.precisioneng.2018.04.012

    Article  Google Scholar 

  22. Puri AB (2017) Advancements in micro wire-cut electrical discharge machining 145–178. https://doi.org/10.1007/978-3-319-52009-4_4

  23. ISO (1997) ISO 4287. Geometrical product specifications (GPS) — surface texture: profile method — terms, definitions and surface texture parameters

  24. ISO (2012) ISO 25178-2. Geometrical product specifications (GPS). Surface texture: Areal — part 2: terms, definitions and surface texture parameters

  25. ISO (1996) ISO 4288. Geometrical product specifications (GPS) - surface texture: profile method — rules and procedures for the assessment of surface texture

  26. Deltombe R, Kubiak KJ, Bigerelle M (2014) How to select the most relevant 3D roughness parameters of a surface. Scanning 36:150–160. https://doi.org/10.1002/sca.21113

    Article  Google Scholar 

  27. VDI (1990) VDI 3402. Elektroerosive bearbeitung: definitionen und terminologie. Deutsches Institut für Normung. Düsseldorf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Lacerda Amorim.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlini, G.C., da Silva, C., Torres, R.D. et al. WED-machining performance by reciprocating molybdenum wire on Inconel 718 with water or hydrocarbon dielectrics. Int J Adv Manuf Technol 119, 1853–1866 (2022). https://doi.org/10.1007/s00170-021-08386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08386-4

Keywords

Navigation