Skip to main content
Log in

Plastic behavior-dependent weldability of heat-treatable aluminum alloys in friction stir welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The quality of friction stir welding joints is intimately related to the correct mixing of the stirred material. The material flow is strongly dependent on the plastic behavior of the welded alloy. For this reason, the friction stir weldability depends on the structure, microstructure, and chemical composition of the base material. In this work, in-plane forces and acoustic emission signals were monitored while welding two heat-treatable aluminum alloys. The force evolutions suggested possible continuous and intermittent material flow during friction stir welding depending on the welding parameters. The differences observed in the in-plane forces were corroborated by acoustic emission, confirming the modification in the material flow phenomenology. Therefore, differences observed in aluminum alloys’ friction stir weldability are due to the plastic behavior at high temperature and medium-high strain rate. The higher the deformability of the aluminum alloys, the wider the weldability window in friction stir welding because of continuous material flow in an extended range of process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1995) U.S. Patent No. 5,460,317, October 24

  2. Engler O, Hirsch J (2002) Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review. Mater Sci Eng A 336(1-2):249–262. https://doi.org/10.1016/S0921-5093(01)01968-2

    Article  Google Scholar 

  3. Ribeiro FC, Scarpin BT, Batalha GF (2016) Experimental and numerical modelling and simulation of the creep age forming of aeronautic panels AA7XXX aluminium alloy. Adv Mater Process Technol 2 (1):1–20. https://doi.org/10.1080/2374068X.2016.1147764

    Google Scholar 

  4. Cavaliere P, Squillace A, Panella F (2008) Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. J Mater Process Technol 200(1-3):364–372. https://doi.org/10.1016/j.jmatprotec.2007.09.050

    Article  Google Scholar 

  5. Leitão C, Louro R, Rodrigues DM (2012) Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6. Mater Des 37:402–409. https://doi.org/10.1016/j.matdes.2012.01.031

    Article  Google Scholar 

  6. Ramulu PJ, Narayanan RG, Kailas SV, Reddy J (2013) Internal defect and process parameter analysis during friction stir welding of Al 6061 sheets. Int J Adv Manuf Technol 65(9-12):1515–1528. https://doi.org/10.1007/s00170-012-4276-z

    Article  Google Scholar 

  7. Forcellese A, Simoncini M, Casalino G (2017) Influence of process parameters on the vertical forces generated during friction stir welding of AA6082-T6 and on the mechanical properties of the joints. Metals 7 (9):1–13. https://doi.org/10.3390/met7090350

    Article  Google Scholar 

  8. Lambiase F, Paoletti A, Di Ilio A (2018) Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6. Int J Adv Manuf Technol 99(1-4):337–346. https://doi.org/10.1007/s00170-018-2524-6

    Article  Google Scholar 

  9. Azimzadegan T, Serajzadeh S (2010) An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds. J Mater Eng Perform 19 (9):1256–1263. https://doi.org/10.1007/s11665-010-9625-1

    Article  Google Scholar 

  10. Bahemmat P, Besharati MK, Haghpanahi M, Rahbari A, Salekrostam R (2010) Mechanical, micro-, and macrostructural analysis of AA7075-T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles. Proc Inst Mech Eng B J Eng Manuf 224(3):419–433. https://doi.org/10.1243/09544054JEM1554

    Article  Google Scholar 

  11. Gemme F, Verreman Y, Dubourg L, Wanjara P (2011) Effect of welding parameters on microstructure and mechanical properties of AA7075-T6 friction stir welded joints. pp 877–886. https://doi.org/10.1111/j.1460-2695.2011.01580.x

  12. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32(2):535–549. https://doi.org/10.1016/j.matdes.2010.08.025

    Article  Google Scholar 

  13. Ipekoǧlu G, Kiral BG, Erim S, Çam G (2012) Investigation of the effect of temper condition on the friction-stir weldability of AA7075 Al-alloy plates. Mater Tehnol 46(6):627–632

    Google Scholar 

  14. Zhang C, Huang G, Cao Y, Zhu Y, Liu Q (2019) On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed. J Manuf Process 37(December 2018):470–487. https://doi.org/10.1016/j.jmapro.2018.12.014

    Article  Google Scholar 

  15. Ambrosio D, Wagner V, Garnier C, Jacquin D, Tongne A, Fazzini M, Dessein G (2020) Influence of welding parameters on the microstructure, thermal fields and defect formation in AA7075-T6 friction stir welds. Weld World 64(5):773–784. https://doi.org/10.1007/s40194-020-00869-4

    Article  Google Scholar 

  16. Ambrosio D, Garnier C, Wagner V, Aldanondo E, Dessein G, Cahuc O (2020) Relationships between welding parameters, aging conditions, and weld properties in AA7075-T6 friction stir welds. Int J Adv Manuf Technol 111(5-6):1333–1350. https://doi.org/10.1007/s00170-020-06184-y

    Article  Google Scholar 

  17. Long T, Tang W, Reynolds AP (2007) Process response parameter relationships in aluminium alloy friction stir welds. Sci Technol Weld Join 12(4):311–317. https://doi.org/10.1179/174329307X197566

    Article  Google Scholar 

  18. Astarita A, Squillace A, Carrino L (2014) Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform 23(10):3754–3761. https://doi.org/10.1007/s11665-014-1140-3

    Article  Google Scholar 

  19. Doude H, Schneider J, Patton B, Stafford S, Waters T, Varner C (2015) Optimizing weld quality of a friction stir welded aluminum alloy. J Mater Process Technol 222:188–196. https://doi.org/10.1016/j.jmatprotec.2015.01.019

    Article  Google Scholar 

  20. Shrivastava A, Zinn M, Duffie NA, Ferrier NJ, Smith CB, Pfefferkorn FE (2017) Force measurement-based discontinuity detection during friction stir welding. J Manuf Process 26:113–121. https://doi.org/10.1016/j.jmapro.2017.01.007

    Article  Google Scholar 

  21. Franke D, Rudraraju S, Zinn M, Pfefferkorn FE (2020) Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys. J Manuf Process 54(November 2019):251–261. https://doi.org/10.1016/j.jmapro.2020.03.003

    Article  Google Scholar 

  22. Chen C, Kovacevic R, Jandgric D (2003) Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int J Mach Tools Manuf 43(13):1383–1390. https://doi.org/10.1016/S0890-6955(03)00130-5

    Article  Google Scholar 

  23. Soundararajan V, Atharifar H, Kovacevic R (2006) Monitoring and processing the acoustic emission signals from the friction-stir-welding process. Proc Inst Mech Eng B J Eng Manuf 220(10):1673–1685. https://doi.org/10.1243/09544054JEM586

    Article  Google Scholar 

  24. Rajashekar R, Rajaprakash BM (2016) Development of a model for friction stir weld quality assessment using machine vision and acoustic emission techniques. J Mater Process Technol 229:265–274. https://doi.org/10.1016/j.jmatprotec.2015.09.030

    Article  Google Scholar 

  25. Metals Handbook (1990) Vol.2 - properties and selection: nonferrous alloys and special-purpose materials, 10th edn. ASM International, Russell

    Google Scholar 

  26. Wang PL, Jiang HT, Zhang RJ, Huang SY (2016) Study of Hot Deformation Behavior of 6082 Aluminum Alloy. Mater Sci Forum 877:340–346. https://doi.org/10.4028/www.scientific.net/msf.877.340

    Article  Google Scholar 

  27. Cadoni E, Dotta M, Forni D, Kaufmann H (2016) Effects of strain rate on mechanical properties in tension of a commercial aluminium alloy used in armour applications. Procedia Struct Integr 2:986–993. https://doi.org/10.1016/j.prostr.2016.06.126

    Article  Google Scholar 

  28. Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42(14):1549–1557. https://doi.org/10.1016/S0890-6955(02)00114-1

    Article  Google Scholar 

  29. Mijajlović MM, Pavlović NT, Jovanović SV, Jovanović DS, Milčić MD (2013) Experimental studies of parameters affecting the heat generation in friction stir welding process. Therm Sci 16 (SUPPL.2):351–362. https://doi.org/10.2298/TSCI120430174M

    Google Scholar 

  30. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143–157. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  31. Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join. https://doi.org/10.1179/136217103225010943

  32. Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool-workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manuf Technol 71(1-4):165–179. https://doi.org/10.1007/s00170-013-5364-4

    Article  Google Scholar 

  33. Jlaiel K, Yahiaoui M, Paris JY, Denape J (2020) Tribolumen: A tribometer for a correlation between ae signals and observation of tribological process in real-time-application to a dry steel/glass reciprocating sliding contact. Lubricants 8(4). https://doi.org/10.3390/LUBRICANTS8040047

  34. Yahiaoui M, Chabert F, Paris JY, Nassiet V, Denape J (2019) Friction, acoustic emission, and wear mechanisms of a PEKK polymer. Tribol Int 132:154–164. https://doi.org/10.1016/j.triboint.2018.12.020

    Article  Google Scholar 

  35. Silva-Magalhães A, De Backer J, Martin J, Bolmsjö G (2019) In-situ temperature measurement in friction stir welding of thick section aluminium alloys. J Manuf Process 39(February):12–17. https://doi.org/10.1016/j.jmapro.2019.02.001

    Article  Google Scholar 

  36. Yan JH, Sutton MA, Reynolds AP (2007) Processing and banding in AA2524 and AA2024 friction stir welding. Sci Technol Weld Join 12(5):390–401. https://doi.org/10.1179/174329307X213639

    Article  Google Scholar 

  37. Shah LH, Walbridge S, Gerlich A (2019) Tool eccentricity in friction stir welding: a comprehensive review. Sci Technol Weld Join 24(6):566–578. https://doi.org/10.1080/13621718.2019.1573010

    Article  Google Scholar 

  38. Zakharov VV (1995) Scientific aspects of deformability of aluminum alloys during extrusion. Adv Perform Mater 2(1):51–65. https://doi.org/10.1007/BF00711651

    Article  Google Scholar 

  39. Reza A, Zhou J, Duszczyk J (2011) Microstructural evolution during the homogenization of Al-Zn-Mg aluminum alloys. Recent Trends in Processing and Degradation of Aluminium Alloys. https://doi.org/10.5772/34695

  40. Ngernbamrung S, Suzuki Y, Takatsuji N, Dohda K (2018) Investigation of surface cracking of hot-extruded AA7075 billet. Procedia Manuf 15:217–224. https://doi.org/10.1016/j.promfg.2018.07.212

    Article  Google Scholar 

  41. Sigworth GK (1996) Hot tearing of metals. AFS Trans-Am Foundry: 1053–1062. Retrieved from papers3://publication/uuid/ 85386CF4-29C7-4099-94CA-3244BD680230

  42. Stoloff NS (1983) Liquid and solid metal ebrittlement. Atomics of fracture, pp 921–947

  43. Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A 415(1-2):250–254. https://doi.org/10.1016/j.msea.2005.09.072

    Article  Google Scholar 

Download references

Funding

This project received funding from the European Union’s Marie Skodowska-Curie Actions (MSCA) Innovative Training Networks (ITN) H2020-MSCA-ITN-2017 under the grant agreement No. 764979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Ambrosio.

Ethics declarations

Ethics approval

Not applicable

Consent for Publication

I am agreeing to publish this work.

Competing interests

The authors declare no competing interests.

Additional information

Author contributions

Danilo Ambrosio: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. Vincent Wagner: conceptualization, methodology, formal analysis, writing—review and editing. Gilles Dessein: conceptualization, methodology, formal analysis, investigation, writing—review and editing, supervision, project administration. Jean-Yves Paris: writing—review and editing. Kholoud Jlaiel: writing—review and editing. Olivier Cahuc: writing—review and editing, supervision, project administration, funding acquisition.

Consent to participate

I am agreeing to participate.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, D., Wagner, V., Dessein, G. et al. Plastic behavior-dependent weldability of heat-treatable aluminum alloys in friction stir welding. Int J Adv Manuf Technol 117, 635–652 (2021). https://doi.org/10.1007/s00170-021-07754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07754-4

Keywords

Navigation