Skip to main content

Advertisement

Log in

Performance improvement of high-speed EDM and ECM combined process by using a helical tube electrode with matched internal and external flushing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-hole fabrication at a high speed and accuracy of machining while maintaining high surface quality is challenging. A core difficulty is the removal of the products of machining from extremely narrow gaps. To solve this problem, this study proposes an approach that combines high-speed electrical discharge machining (EDM) with electrochemical machining (ECM) by using a helical tube electrode with matched internal and external flushing. During high-speed electrical discharge drilling, matching the internal flushing with the clockwise rotation of the helical electrode can help remove debris from the bottom of the blind hole. During ECM, matching the external flushing with the anticlockwise rotation of the helical electrode can improve the flow of electrolyte in the gap. First, the flow field was simulated to show that matching the internal and external flushing of the helical electrode can enhance the flow of the medium and reduce particle concentration in extremely narrow gaps. Second, a series of experiments were conducted to verify that the taper of the hole and the surface quality of its wall can be improved by using the helical tube electrode. Finally, an experiment was carried out to optimize the machining parameters and yielded a minimum taper of 0.008 at a speed of rotation of 460 rpm, and pressures of internal and external flushing of 9 MPa and 4 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zhang Y, Wen Z, Pei H, Yue Z (2019) Equivalent model of close-packed film cooling holes in nickel-based single crystal cooled blade based on crystallographic theory. Chin J Aeronaut 32:839–850. https://doi.org/10.1016/j.cja.2019.01.007

    Article  Google Scholar 

  2. Wang J, Liang J, Wen Z, Yang Y, Yue Z (2019) The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film-cooling holes. Int J Mech Sci 163:105090. https://doi.org/10.1016/j.ijmecsci.2019.105090

    Article  Google Scholar 

  3. Wen Z, Liang J, Liu C, Pei H, Wen S, Yue Z (2018) Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. Int J Mech Sci 141:276–289. https://doi.org/10.1016/j.ijmecsci.2018.04.018

    Article  Google Scholar 

  4. Zhu XD, Zhang JZ, Tan XM (2019) Numerical assessment of round-to-slot film cooling performances on a turbine blade under engine representative conditions. Commun Heat Mass Transfer 100:98–110. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.008

    Article  Google Scholar 

  5. Skamniotis C, Cocks ACF (2021) Minimising stresses in double wall transpiration cooled components for high temperature applications. Int J Mech Sci 189:105983. https://doi.org/10.1016/j.ijmecsci.2020.105983

    Article  Google Scholar 

  6. Li W, Lu X, Li X, Ren J, Jiang H (2019) Wall thickness and injection direction effects on flat plate full-coverage film cooling arrays: Adiabatic film effectiveness and heat transfer coefficient. Int J Therm Sci 136:172–181. https://doi.org/10.1016/j.ijthermalsci.2018.10.021

    Article  Google Scholar 

  7. Liu K, Yang SF, Han JC (2014) Influence of Coolant Density on Turbine Blade Film-Cooling With Axial and Compound Shaped Holes. J Heat Transf 136:44501. https://doi.org/10.1115/1.4025901

    Article  Google Scholar 

  8. Krewinkel R (2013) A review of gas turbine effusion cooling studies. Int J Heat Mass Transf 66:706–722. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.071

    Article  Google Scholar 

  9. Kim KM, Park JS, Lee DH, Lee TW, Cho HH (2011) Analysis of conjugated heat transfer, stress and failure in a gas turbine blade with circular cooling passages. Eng Fail Anal 18:1212–1222. https://doi.org/10.1016/j.engfailanal.2011.03.002

    Article  Google Scholar 

  10. Zhang Y, Xu Z, Zhu D, Xing J (2015) Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution. Int J Mach Tools Manuf 92:10–18. https://doi.org/10.1016/j.ijmachtools.2015.02.011

    Article  Google Scholar 

  11. Ma Y, Cheng G (2017) Forming property and broaching error prediction of a forged nickel-based superalloy turbine disc. Aerosp Sci Technol 62:55–64. https://doi.org/10.1016/j.ast.2016.09.022

    Article  Google Scholar 

  12. Liu NM, Chiang KT, Horng JT, Chen CC (2010) Modeling and analysis of the edge disintegration in the EDM drilling cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 51:587–598. https://doi.org/10.1007/s00170-010-2629-z

    Article  Google Scholar 

  13. Li Z, Tang J, Bai J (2020) A novel micro-EDM method to improve microhole machining performances using ultrasonic circular vibration (UCV) electrode. Int J Mech Sci 175:105574. https://doi.org/10.1016/j.ijmecsci.2020.105574

    Article  Google Scholar 

  14. Li G, Natsu W (2020) Realization of micro EDM drilling with high machining speed and accuracy by using mist deionized water jet. Precis Eng 61:136–146. https://doi.org/10.1016/j.precisioneng.2019.09.016

    Article  Google Scholar 

  15. Xu Y, Chen J, Jiang B, Liu Y, Ni J (2018) Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining. Int J Mech Sci 142-143:86–96. https://doi.org/10.1016/j.ijmecsci.2018.04.020

    Article  Google Scholar 

  16. Kurita T, Hattori M (2006) A study of EDM and ECM/ECM-lapping complex machining technology. Int J Mach Tools Manuf 46:1804–1810. https://doi.org/10.1016/j.ijmachtools.2005.11.009

    Article  Google Scholar 

  17. Nguyen KH, Lee PA, Kim BH (2015) Experimental investigation of ECDM for fabricating micro structures of quartz. Int J Precis Eng Manuf 16:5–12. https://doi.org/10.1007/s12541-015-0001-9

    Article  Google Scholar 

  18. Wang Y, Xu Z, Liu J, Zhang A, Xu Z, Meng D, Zhao J (2021) Study on flow field of electrochemical machining for large size blade. Int J Mech Sci 190:106018. https://doi.org/10.1016/j.ijmecsci.2020.106018

    Article  Google Scholar 

  19. Liang W, Tong H, Li Y, Li B (2019) Tool electrode wear compensation in block divided EDM process for improving accuracy of diffuser shaped film cooling holes. Int J Adv Manuf Technol 103:1759–1767. https://doi.org/10.1007/s00170-019-03591-8

    Article  Google Scholar 

  20. Liu K, Lauwers B, Reynaerts D (2009) Process capabilities of Micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19. https://doi.org/10.1007/s00170-009-2056-1

    Article  Google Scholar 

  21. Pham DT, Ivanov A, Bigot S, Popov K, Dimov S (2006) An investigation of tube and rod electrode wear in micro EDM drilling. Int J Adv Manuf Technol 33:103–109. https://doi.org/10.1007/s00170-006-0639-7

    Article  Google Scholar 

  22. Zhang Y, Xu Z, Zhu Y, Zhu D (2016) Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling. J Mater Process Technol 231:38–49. https://doi.org/10.1016/j.jmatprotec.2015.12.012

    Article  Google Scholar 

  23. Fang XL, Zou XH, Chen M, Zhu D (2017) Study on wire electrochemical machining assisted with large-amplitude vibrations of ribbed wire electrodes. CIRP Ann-Manuf 66:205–208. https://doi.org/10.1016/j.cirp.2017.04.135

    Article  Google Scholar 

  24. Zou XH, Fang XL, Zeng YB, Zhu D (2017) A high efficiency approach for wire electrochemical micromachining using cutting edge tools. Int J Adv Manuf Technol 91:3943–3952. https://doi.org/10.1007/s00170-017-0063-1

    Article  Google Scholar 

  25. Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I (2014) Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precis Eng 38:821–827. https://doi.org/10.1016/j.precisioneng.2014.04.010

    Article  Google Scholar 

  26. Yang CK, Wu KL, Hung JC, Lee SM, Lin JC, Yan BH (2011) Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int J Mach Tools Manuf 51:528–535. https://doi.org/10.1016/j.ijmachtools.2011.03.001

    Article  Google Scholar 

  27. Wang W, Zhu D, Qu NS, Huang SF, Fang XL (2010) Electrochemical drilling with vacuum extraction of electrolyte. J Mater Process Technol 210:238–244. https://doi.org/10.1016/j.jmatprotec.2009.09.006

    Article  Google Scholar 

  28. Zhu D, Wang W, Fang XL, Qu NS, Xu ZY (2010) Electrochemical drilling of multiple holes with electrolyte-extraction. CIRP Ann Manuf 59:239–242. https://doi.org/10.1016/j.cirp.2010.03.135

    Article  Google Scholar 

  29. Li C, Zhang B, Li Y, Tong H, Ding S, Wang Z, Zhao L (2018) Self-adjusting EDM/ECM high speed drilling of film cooling holes. J Mater Process Technol 262:95–103. https://doi.org/10.1016/j.jmatprotec.2018.06.026

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 51705239).

Funding

This research was funded by National Natural Science Foundation of China, grant number 51705239.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, GQ. W.; formal analysis, WT. Y.; investigation, J.Z.; methodology, Y.Z.; project administration, Y.Z.; writing original draft, L.J.; writing review & editing, Y.Z.

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Zhang, Y., Wang, G. et al. Performance improvement of high-speed EDM and ECM combined process by using a helical tube electrode with matched internal and external flushing. Int J Adv Manuf Technol 117, 1243–1262 (2021). https://doi.org/10.1007/s00170-021-07595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07595-1

Keywords

Navigation