Skip to main content
Log in

An extended analysis on tuning the parameters of Adaptive Monte Carlo Localization ROS package in an automated guided vehicle

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With a growth tendency, the employment of the Adaptive Monte Carlo Localization (AMCL) Robot Operational System (ROS) package does not reflect a more in-depth discussion on its parameters’ tuning process. The authors usually do not describe it. This work aims to extend the analysis of the package’s parameters’ distinct influence in an automated guided vehicle (AGV) indoor localization. The experiments test parameters of the filter, the laser model, and the odometry model. Extending the previous analysis of seven parameters, the present research discusses another ten from the 22 configurable parameters of the package. An external visual vehicle pose tracking is used to compare the pose estimation from the localization package. Although the article does not propose the best parameter tuning, its results discuss how each tested parameter affects the localization. The paper’s contribution is discussing the parameters’ variation impact on the AGV localization using the covariance matrix results. It may help new researchers in the AMCL ROS package parameter tuning process. The results show minor changes in the default parameters which can improve the localization results, even modifying one parameter at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Guzman R, Navarro R, Beneto M, Carbonell D (2016) Robotnik-Professional service robotics applications with ROS. In: Robot Operating System (ROS). Springer, pp 253–288

  2. Guzmán R, Navarro R, Cantero M, Ariño J (2017) Robotnik–professional service robotics applications with ROS (2). In: Robot Operating System (ROS). Springer, pp 419–447

  3. Howard A, Gerkey B (2002) Adaptive Monte-Carlo Localization (AMCL) package. Robot Operating System (ROS). http://wiki.ros.org/amcl

  4. Azevedo JPS (2017) Automatic parameter tuning of algorithms using optimization. Master’s thesis. Instituto Superior Técnico Lisboa - Lisbon, Portugal

  5. dos Reis WPN, Morandin O, Vivaldini KCT (2019) A quantitative study of tuning ROS adaptive Monte Carlo localization parameters and their effect on an AGV localization. In: 2019 19th International Conference on Advanced Robotics (ICAR) . IEEE, pp 302–307

  6. Astolfi P, Gabrielli A, Bascetta L, Matteucci M (2018) Vineyard autonomous navigation in the echord++ grape experiment. IFAC-PapersOnLine 51(11):704

    Article  Google Scholar 

  7. Kudriashov A, Buratowski T, Giergiel M (2019) Hybrid AMCL-EKF filtering for SLAM-based pose estimation in rough terrain. Mechanisms and Machine Science 73:2819

    Article  Google Scholar 

  8. Xu S, Chen R, Yu Y, Guo G, Huang L (2019) Locating smartphones indoors using built-in sensors and Wi-Fi ranging with an enhanced particle filter. IEEE Access 7:95140

    Article  Google Scholar 

  9. Xu S, Chou W, Dong H (2019) A robust indoor localization system integrating visual localization aided by CNN-based image retrieval with Monte Carlo localization. Sensors 19(2):249

    Article  Google Scholar 

  10. Li G, Meng J, Xie Y, Zhang X, Huang Y, Jiang L, Liu C (2019) Reliable and fast localization in ambiguous environments using ambiguity grid map. Sensors 19(15)

  11. Zhang B, Liu J, Chen H (2013) AMCL based map fusion for multi-robot SLAM with heterogenous sensors. In: 2013 IEEE International Conference on Information and Automation (ICIA). IEEE, pp 822–827

  12. Zhang Y, Chen D, Lin H, Zhao L (2018) Adaptive iterated cubature particle filter for mobile robot Monte Carlo localization. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, pp 727–732

  13. Song KT, Chiu YH, Kang LR, Song SH, Yang CA, Lu PC, Ou SQ (2018) Navigation control design of a mobile robot by integrating obstacle avoidance and LiDAR SLAM. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 1833–1838

  14. Muñoz-Bañón MÁ, del Pino I, Candelas FA, Torres F (2019) Framework for fast experimental testing of autonomous navigation algorithms. Appl. Sci. 9(10):1997

    Article  Google Scholar 

  15. Anderson P, Shrivastava A, Truong J, Majumdar A, Parikh D, Batra D, Lee S (2020) Sim-to-real transfer for vision-and-language navigation. arXiv:2011.03807

  16. Charabaruk N, Nokleby S (2016) Design and development of an autonomous omnidirectional hazardous materials handling robot. Trans. Can. Soc. Mech. Eng. 40(2):169

    Article  Google Scholar 

  17. Li Z, Xiong Y, Zhou L (2017) ROS-based indoor autonomous exploration and navigation wheelchair. In: 2017 10th International Symposium on Computational Intelligence and Design (ISCID), vol 2. IEEE, pp 132–135

  18. Maniscalco U, Infantino I, Manfre A (2017) Robust mobile robot self-localization by soft sensor paradigm. In: 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS). IEEE, pp 19–24

  19. Thale SP, Prabhu MM, Thakur PV, Kadam P (2020) ROS based SLAM implementation for autonomous navigation using turtlebot. In: ITM Web of conferences, vol 32. EDP Sciences, p 01011

  20. Russo LO, Rosa S, Maggiora M, Bona B (2016) A novel cloud-based service robotics application to data center environmental monitoring. Sensors 16(8):1255

    Article  Google Scholar 

  21. Alhashimi AW, Hostettler R, Gustafsson T (2014) An improvement in the observation model for Monte Carlo localization. In: 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol 2. IEEE, pp 498–505

  22. Javierre P, Alvarado BP, de la Puente P (2019) Particle filter localization using visual markers based omnidirectional vision and a laser sensor. In: 2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, pp 246–249

  23. Stahl T, Wischnewski A, Betz J, Lienkamp M (2019) ROS-based localization of a race vehicle at high-speed using LiDAR. In: E3S Web of Conferences. EDP Sciences, vol 95, p 04002

  24. de Miguel MÁ, García F, Armingol JM (2020) Improved LiDAR probabilistic localization for autonomous vehicles using GNSS. Sensors 20(11):3145

    Article  Google Scholar 

  25. Wasisto I, Istiqomah N, Trisnawan IKN, Jati AN (2019) Implementation of mobile sensor navigation system based on adaptive monte carlo localization. In: 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA). IEEE, pp 187–192

  26. Zheng K (2016) ROS navigation tuning guide. http://kaiyuzheng.me/documents/papers/ros_navguide.pdf. Last access: 2020-03-23

  27. Lima O, Ventura R (2017) A case study on automatic parameter optimization of a mobile robot localization algorithm. In: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, pp 43–48

  28. Thrun S, Fox D, Burgard W, Dellaert F (2001) Robust Monte Carlo localization for mobile robots. Artif Intell 128(1-2):99

    Article  Google Scholar 

  29. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    MATH  Google Scholar 

  30. Puppim de Oliveira D, Pereira Neves dos Reis W, Morandin Junior O (2019) A qualitative analysis of a USB camera for AGV control. Sensors 19(19):4111

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support of Capes, all the colleagues of TEAR Laboratory, and Dr. Abdeldjallil Naceri. The authors wish to extend special gratitude to Matheus Ungaretti Borges for kindly present the previous paper in ICAR 2019.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Wallace dos Reis was financed in part by the Federal Institute of Education, Science and Tecnology of Rio de Janeiro—IFRJ, campus Volta Redonda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace Pereira Neves dos Reis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Author contribution

Conceptualization: Wallace Pereira Neves dos Reis and Kelen Cristiane Teixeira Vivaldini. Methodology: Wallace Pereira Neves dos Reis, Kelen Cristiane Teixeira Vivaldini, and Orides Morandin Junior. Formal analysis and investigation: Wallace Pereira Neves dos Reis. Software and visualization: Wallace Pereira Neves dos Reis and Guilherme José da Silva. Writing—original draft preparation: Wallace Pereira Neves dos Reis. Writing—review and editing: Orides Morandin Junior. Resources: Kelen Cristiane Teixeira Vivaldini and Orides Morandin Junior. Supervision: Kelen Cristiane Teixeira Vivaldini and Orides Morandin Junior.

Availability of data and materials

All the data and material are available upon request to the corresponding author.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, W.P.N.d., Silva, G.J.d., Junior, O.M. et al. An extended analysis on tuning the parameters of Adaptive Monte Carlo Localization ROS package in an automated guided vehicle. Int J Adv Manuf Technol 117, 1975–1995 (2021). https://doi.org/10.1007/s00170-021-07437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07437-0

Keywords

Navigation