Skip to main content
Log in

Control of machining distortion stability in machining of monolithic aircraft parts

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining distortion has been a long-term obstacle in the machining of aircraft monolithic parts. Furthermore, its stability has to be considered. The machining distortion stability represents the fluctuation degree of the machining distortion. This paper investigates the evolution of elastic energy induced by initial residual stress inside materials, revealing that this evolution directly affects machining distortion. In this paper, the concept of machining distortion stability and bending potential energy is defined. By analyzing bending potential energy releasing, this study proposes a novel method for improving machining distortion stability through optimization of material removal sequence. Numerical simulation and milling experiments are performed to verify and validate the model, respectively. The results indicate that the machining distortion stability is significantly improved when optimized material removal sequence is applied. By controlling the machining distortion stability, the final distortion can be further reduced via re-machining the machining datum at the beginning of the finishing stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. El-Aty AA, Xu Y, Guo XZ, Zhang SH, Chen DY (2017) Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J Adv Res 10:49–67. https://doi.org/10.1016/j.jare.2017.12.004

    Article  Google Scholar 

  2. Li XY, Yang YF, Li L, Shi YW, Zhao GL, He N (2020) An approach for optimising the fixturing configuration in flexible machining fixtures. Int J Prod Res 2:1–18. https://doi.org/10.1080/00207543.2020.1808262

    Article  Google Scholar 

  3. Yang Y, Li M, Li KR (2014) Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component. Int J Adv Manuf Technol 70(9):1803–1811. https://doi.org/10.1007/s00170-013-5431-x

    Article  Google Scholar 

  4. Li WD, Ma LX, Wan M, Peng JW, Meng B (2018) Modeling and simulation of machining distortion of pre-bent aluminum alloy plate. J Mater Process Technol 258:189–199. https://doi.org/10.1016/j.jmatprotec.2018.03.019

    Article  Google Scholar 

  5. Chen N, Li HN, Wu JM, Li ZJ, Li L, Liu GY, He N (2020) Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tools Manuf In press 160:103670. https://doi.org/10.1016/j.ijmachtools.2020.103670

    Article  Google Scholar 

  6. Li JG, Wang SQ (2017) Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances. Int J Adv Manuf Technol 89(1):997–1012. https://doi.org/10.1007/s00170-016-9066-6

    Article  Google Scholar 

  7. Li XY, Yang YF, Li L, Zhao GL, He N (2020) Uncertainty quantification in machining deformation based on bayesian network. Reliab Eng Syst Saf:107113. https://doi.org/10.1016/j.ress.2020.107113

  8. Hussain A, Lazoglu I (2019) Distortion in milling of structural parts. CIRP Ann Manuf Technol 68(1):105–108. https://doi.org/10.1016/j.cirp.2019.04.053

    Article  Google Scholar 

  9. Bedekar V, Voothaluru R, Bunn JR, Hyde RS (2019) Measurement and prediction of through-section residual stresses in the manufacturing sequence of bearing components. CIRP Ann Manuf Technol 68(1):57–60. https://doi.org/10.1016/j.cirp.2019.03.004

    Article  Google Scholar 

  10. Brinksmeier E, Cammett JT, Konig W, Leskovar P, Tonshoff HK (1982) Residual stresses-measurement and causes in machining processes. CIRP Ann Manuf Technol 31(2):491–510. https://doi.org/10.1016/S0007-8506(07)60172-3

    Article  Google Scholar 

  11. Husson R, Dantan JY, Baudouin C, Silvani S, Scheer T, Bigot R (2012) Evaluation of process causes and influences of residual stress on gear distortion. CIRP Ann Manuf Technol 61(1):551–554. https://doi.org/10.1016/j.cirp.2012.03.106

    Article  Google Scholar 

  12. Heinzel C, Solter J, Gulpak M, Riemer O (2017) An analytical multilayer source stress approach for the modelling of material modifications in machining. CIRP Ann Manuf Technol 66(1):531–534. https://doi.org/10.1016/j.cirp.2017.04.073

    Article  Google Scholar 

  13. Brinksmeier E, Thomas L, Fritsching U, Cui C, Rentsch R, Solter J (2011) Distortion minimization of disks for gear manufacture. Int J Mach Tools Manuf 51(4):331–338. https://doi.org/10.1016/j.ijmachtools.2010.12.005

    Article  Google Scholar 

  14. Urresti I, Nikov S, Brown P, & Arrazola PJ (2009). Aerospace gas turbine disc distortion modelling: machining sequence optimization. In Proceedings of the 12th CIRP Conference on Modeling Machining operations, San Sebastian, Spain.

  15. Cerutti X, Mocellin K, Hassini S, Blaysat B, Duc E (2017) Methodology for aluminium part machining quality improvement considering mechanical properties and process conditions. CIRP J Manuf Sci Technol 18(18–38):18–38. https://doi.org/10.1016/j.cirpj.2016.07.004

    Article  Google Scholar 

  16. Lequeu P, Lassince P, Warner T, Raynaud GM.(2001). Engineering for the future: weight saving and cost reduction initiatives [J]. Aircraft Engineering and Aerospace Technology, 73(2), 147-159, https://doi.org/10.1108/00022660110386663.

  17. Wang ZB, Sun JF, Chen WY, Liu LB, Wang RQ (2018) Machining distortion of titanium alloys aero engine case based on the energy principles. Metals 8(6):464. https://doi.org/10.3390/met8060464

    Article  Google Scholar 

  18. Yang YF, Fan LX, Li L, Zhao GL, Han N, Li XY, Tian H, He N (2020) Energy principle and material removal sequence optimization method in machining of aircraft monolithic parts. Chin J Aeronaut 33(10):2770–2781. https://doi.org/10.1016/j.cja.2020.05.018

    Article  Google Scholar 

  19. Tunc LT, Zatarain M (2019) Stability optimal selection of stock shape and tool axis in finishing of thin-wall parts. CIRP Ann Manuf Technol 68(1):401–404. https://doi.org/10.1016/j.cirp.2019.04.096

    Article  Google Scholar 

  20. Koike Y, Matsubara A, Yamaji I (2013) Design method of material removal process for minimizing workpiece displacement at cutting point. CIRP Ann Manuf Technol 62(1):419–422. https://doi.org/10.1016/j.cirp.2013.03.144

    Article  Google Scholar 

  21. Yang YF, Li XY, Li L, He N, Zhao GL, Chen N, Zhou ZW (2019) Investigation on deformation of single-sided stringer parts based on fluctuant initial residual stress. J Mater Process Technol:623–633. https://doi.org/10.1016/j.jmatprotec.2019.04.031

  22. Wang ZB, Sun JF, Liu LB, Wang RB, Chen WY (2019) An analytical model to predict the machining deformation of frame parts caused by residual stress. J Mater Process Technol 274:116282. https://doi.org/10.1016/j.jmatprotec.2019.116282

    Article  Google Scholar 

  23. Zhang Z, Li L, Yang YF, He N, Zhao W (2014) Machining distortion minimization for the manufacturing of aeronautical structure. Int J Adv Manuf Technol 73(9):1765–1773. https://doi.org/10.1007/s00170-014-5994-1

    Article  Google Scholar 

  24. Gao HJ, Zhang YD, Wu Q, Song J (2017) An analytical model for predicting the machining deformation of a plate blank considers biaxial initial residual stresses. Int J Adv Manuf Technol 93(1):1473–1486. https://doi.org/10.1007/s00170-017-0528-2

    Article  Google Scholar 

  25. Richter-Trummer V, Koch D, Witte A, Santos JF, Castro PM (2013) Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination. Int J Adv Manuf Technol 68(9–12):2271–2281. https://doi.org/10.1007/s00170-013-4828-x

    Article  Google Scholar 

  26. Masoudi S, Amini S, Saeidi E, Eslamichalander H (2015) Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol 76(1):597–608. https://doi.org/10.1007/s00170-014-6281-x

    Article  Google Scholar 

  27. Prime MB, Hill MR (2002) Residual stress, stress relief, and inhomogeneity in aluminum plate. Scr Mater 46(1):77–82. https://doi.org/10.1016/S1359-6462(01)01201-5

    Article  Google Scholar 

  28. Su JC, Young KA, Ma K, Srivatsa S, Morehouse JB, Liang SY (2013) Modeling of residual stresses in milling. Int J Adv Manuf Technol 65(5):717–733. https://doi.org/10.1007/s00170-012-4211-3

    Article  Google Scholar 

  29. Arrazola PJ, Ozel T, Umbrello D, Davies MA, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52075251, U1601204) and National Science and Technology Major Project (2017-VII-0001-0094).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Liang Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Li, L., Yang, Y. et al. Control of machining distortion stability in machining of monolithic aircraft parts. Int J Adv Manuf Technol 112, 3189–3199 (2021). https://doi.org/10.1007/s00170-021-06605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06605-6

Keywords

Navigation